
NASA-CR-20344I

.. ,. , '..., .

" L-. ¸ - ::

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

ARC 275 (Rev Feb 81)

Panel Library Programmer's Manual

David A. Tristram 1, Pamela P. Walatka 2 and Eric L. Raible 3

Report RNR-90-006, April 1990

NAS Systems Division

NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

Preliminary Draft

Reviewer's Copy

1 Silicon Graphics International, 2021 N Shoreline BI., Mountain View, CA 94039-7311

ZComputer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000

3NASA Ames Research Center, Moffett Field, CA 94035-1000

README

The Panel Library is supported on all models of IRIS, and is currently most

useful with C code. The manual and software are distributed without copy-

right to any institution or business within the United States. The software

is distributed for the use of the recipient only and is not to be redistributed.

GETTING THE PANEL LIBRARY

All e-mail correspondences about the Panel Library should be addressed to

panel-reques_©nas.nasa.gov

We will e-mail instructions on how to get the code.

Or send regular mail to:

NAS Applied Research Office

ATTN: PANEL LIBRARY REQUEST

M/S T045-1

NASA Ames Research Center

Moffett Field, CA 94035

DOCUMENTATION

Hard copies of this manual are available from

NAS Documentation Center

M/S 258-6

NASA Ames Research Center

Moffett Field, CA 94035-1000

(415) 604-4632

(FTS) 464-4632

doc-center@prandtl.nas.nasa.gov

2

You can print your own from the file manual.dv| in the Panel Library

directory. To print it, type: lpr -d -Ppr_ntername manual.dvi. For example:

ipr -d -Pim5 manual.dvi

We strongly recommend that you pick up an already-printed copy from the
Documentation Center.

Theoretically, the file manual.dr| is on-line viewable with the utility dviiris.

Refer to Appendix .%. [Please let us know if this works.]

PANEL EDITOR - EASY PANEL MAKING!

While the Panel Library has been designed to make it easy to create interac-

tive panels, it is nevertheless time-consuming to make a panel look exactly

the way you want. Eric l%aible is working on a tool to solve this problem,

a panel-library based graphical panel editor. With it, you can create panels

and actuators dynamically, move them around, resize them, etc, and then

dump out a ready-to-compile C program. Among many other features, it

has extensive context sensitive on-line help. While it cannot at present edit

existing panel library applications, this capability is planned for the future.

You can get more information about the panel editor by sending a message

to panel-request @nas.nasa.gov.

TUTORIAL

Karen McCann has prepared a Panel Library tutorial which is very helpful

to Panel Library programmers. Contact Tom Kropp at Sterling Software

(415) 964-9900 for details.

ORIGIN AND SUPPORT OF PANEL LIBRARY

The Panel Library code was written by David Tristram at NASA Ames-
Research Center in the late 1980's. David left NASA in 1989 and now works

for Silicon Graphics International.

Creon Levit inspired some of the original design.

This manual was reviewed by (YOUI% NAME HEI%E! JUST REPORT ER-

RORS AND OMISSIONS TO PAM: walatka@orv.nas.nasa.gov).

Abstract

The Panel Library provides a user-interface toolkit for the Silicon Graphics

IRIS workstation family. It is used by programmers writing applications

for the IRIS. The Panel Library allows the application user to point and

click with the mouse rather than type input with the keyboard. Output is

graphically displayed.

User-interfaces built using the Panel Library consist of "actuators" and "pan-

els'. Actuators are buttons, dials, sliders, or other mouse-sensitive symbols

that are capable of being visible on the screen. The user clicks the mouse

when the cursor is on an actuator, and thus selects the actuator. When a

button is selected, it changes color, and the fact that it is selected is sent to

the program, changing the value of the button's field. Other actuators can

be manipulated by moving the mouse. When the user selects a slider, and

drags the mouse while holding down the mouse button, the value associated

with the slider is changed, and slider's appearance changes to reflect the new

value. This all happens instantly and with very little effort on the part of

the user (or the programmer).

Usually, only the left mouse button is used.

Panels are groups of actuators that occupy separate windows on the Silicon

Graphics IRIS Workstations. Like all IRIS Graphics Library windows, panels
can be stored as icons when not in use. Actuators also can be stowed.

The Panel Library offers a number of programmer functions that access

two data structures: 1. the descriptor of panels, and 2. the descriptor of

actuators.

This draft of this manual contains an introductory chapter with sample

code and notes on initialization, connecting the panel library to the rest

of your program, scripting, action functions. There are other chapters on

programmer's functions, types of actuators, fields of the panel and actuator

structures, global variables, and behavior functions.

Good luck!

4

Symbols, Conventions, and Keywords

actuator (lowercase):

Actuator(Iinitial capital):

panel(lowercase):

Panel(Initialcapital):

lower casebold:

PNL_SMALL CAPS:

SMALL CAPS:

italics():

italics:.

a dial or slider, etc., capable

of appearing on the screen

the data structure that

defines an actuator

a group of actuators, appearing as
an HtIS window on the screen

the data structure that defines a panel

a field in one of the two data structures:

Panel structure

Actuator structure

manifest constants defined for the

Panel Library

manifest constants

name of programmer's functions

global variable

Contents

2

3

Introduction 9

1.1 Interactive Visualization Using the Panel Library 9

1.2 This Manual and the Demonstration Programs 10

1.3 Some Sample Code 10
1.4 Initialization 12

1.5 Connecting The Panel Library To The Rest Of Your Program 13
1.5.1 Global Actuators and Panels 14

1.5.2 Action Functions 14

1.5.3 Pnl_dopanel 0 return value 15

1.5.4 Using additional data 15

1.6 Signal Handling 16

1.7 Scripting 16

1.8 Script Files 16

Progranuner Functions

Actuators

3.1 Overview of Actuator Types

3.1.1

3.1.2

3.1.3

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.1.10

19

41

41

Buttons 42

Sliders 42

Palettes 42

Pucks 42

Other Valuators 42

Meters 43

Strip Charts 43

Text Manipulators 43
Mouse 43

Compound Actuators 43

5

CONTENTS

3.1.11 New Actuators 45

3.2 Actuator Descriptions 46

3.3 Buttons 49

3.4 Sliders 54

3.5 Palettes 58

3.6 Pucks 61

3.7 Other Valuators 64

3.8 Meters 69

3.9 Strip Charts 70

3.10 Text Manipulators 72

3.11 Mouse 76

3.12 Compound Actuators 77

3.12.1Multislider 77

3.12.2 Grouping Actuators 81

3.12.3Menus 89

3.12.4 Signal 94

3.13 New Actuators-Viewframe and ?? 95

4 Structure Fields 97

4.1 List of Fields 97

4.2 Field Descriptions 101

5 Global Variables 129

5.1 Colors 129

5.2 Fill Pattern 131

5.3 Panel and Actuator Structures 132

5.4 Positions and Dimensions 134

5.5 Scripting 136

5.6 Library State 138

6 Behavior Functions 143

7 Sequence of Calls to Functions

Appendix A. dviiris 149

Figure 1. Demo 27--examples of the basic actuators. Two panels are shown: "Mondo" contains

buttons, radio buttons, wide buttons, arrow buttons, sliders, a slideroid, typin, typeout, meter, bar

meter, strip chart, scaling strip chart, palettes, dials, and pucks. "Scripting" contains buttons that

activate scripting functions. The scripting panel is pre-defined in the Panel Library.

Figure 2. Example of panels and actuators used in a previous version of FAST. At the top-left are

purple icons of stowed panels. At mid-left is a panel--SURFER Viewer--with wide-buttons, sli-

ders, and a puck. In the middle, the Function Colormap panel has radio buttons, a wide-button, a

multi-slider, two palettes, and three sliders. At bottom left, the SURFER Data panel has wide-

buttons, buttons, and typeouts. The Surfer panel has pull-down menus, wide-buttons, a view-

frame actuator, buttons, typeins (Top, Top, Max), and multi-sliders with palettes. See New Ac-

tuators for information on viewframes.

Chapter 1

Introduction

1.1 Interactive Visualization Using the Panel Library

The Panel Library is a toolkit for building interactive graphics applications

on Silicon Graphics IRIS workstations. The Panel Library provides sliders,

buttons, and assorted instruments that are used as graphic input/output

devices. With the IRIS mouse, the application user can alter any variable

in the graphics program, or fire off functions with a click on a button. The
evolution of data values can be tracked with meters and strip charts, and

dialog boxes with text processing typeins and typeouts can be built. You

will be surprised at how easy it is to build sophisticated interactive user

interfaces with the Panel Library.

Programmers can start using the Library quickly, basing their work on the

more than forty demo programs shipped with the source. Creating actuators

and control panels is easy, and requires calling only a few Library functions.

After an actuator is created, any aspect of it can be modified by updating

the corresponding field in its descriptor. The Library immediately and auto-

matically updates the graphical representation of the actuator on the screen

to match its new position, size, or value.

Our approach with the Library so far has been to develop a framework that

supports an extensible number of different actuators. This way, new actua-

tors or special versions of existing ones can be made part of the system to

add new features to the Library. Then, we used the Library in the devel-

opment of some of our research codes, like the interactive flow visualization

applications FAST and ISOLEV, to find out what features and capabilities

10 CHAPTER 1. INTRODUCTION

we really neded. By refining the Library with real applications we have built

a toolkit that is actually useful.

In the future we intend to add features and capabilities (and, yes, fix bugs)

to meet NAS program requirements. The Panel Library is a big part of

the major NAS flow analysis software effort FAST, and is being used at over

fifty other research, academic and industrial sites around the world. As these

projects progress, the Panel Library will be enhanced to keep pace with their
needs.

1.2 This Manual and the Demonstration Programs

This reference manual is in a draft stage. It provides documentation of

the library's functional interface, the actuator types, the use and meaning

of the structure fields, the global variables used to control the library, and

behavior functions. In this chapter it also gives some words on some basic

concepts and design philosophy. However, it does not provide much high-

level help for the new user of the library. New users are directed to the dozens

of demonstration programs provided with the source code(D.demos). Each

demo illustrates a new feature of the library, and, incidently, the order of the

demos reflects its development history. The Panel Library is an extremely

powerful and flexible toolkit, and there are usually a couple of ways to do

what you want to do, so take some time when developing your application

to consider the solution best for you.

1.3 Some Sample Code

To access the Panel Library, use an include statement as shown below.

The following is a code fragment that allocates two global variables to hold

pointers to actuators, and defines a function that, when called, creates a

panel, creates two sliders with specified labels, positions, initial values, and

value ranges, adds the sliders to the panel, and returns a pointer to the

panel.

1.3. SOME SAMPLE CODE 11

#include <panel.h>

/* globally accessible pointers to actuators */

Actuator *sliderl, *slider2;

/* call defpanol()before pnl_dopanel() to create a panel */

/* containing two sliders. */

Panel

*defpanel ()

(
Panel *panel;

panel=pnl_mkpanel(); /*create a panel structure */

panel->label="position con_rol"; /*give it a title bar s_rinE*/

sliderl=pnl_mkact(pnl_hslider);

sliderl->label="x position";

sliderl->x=l.O;

sliderl->minval= -i.0;

sliderl->maxval=l.O;

pnl_addact(sliderl0 panel);

/* create a horizontal slider */

/* assign some of its properties */

/* place the slider on the panel */

slider2=pnl_mkact(pnl_vslider);

slider2->label="y position";

slider2->minval= -I.0;

slider2->maxval=1.0;

pnl_addact(slider2, panel);

return panel;

/* create a vertical slider */

/* assign some of its properties */

/* place the slider on the panel */

After creating the panel, the programmer places a call to pnl_dopanel 0 in his

or her program's main loop to process input events and animate the controls

on the screen.

12 CHAPTER 1. INTRODUCTION

main() £

winopen ("my. prog") ;
dofpanol() ;

while(1)

pnl_dopanel();

draw_my_graphics () ;
}

}

1.4 Initialization

The function pnl_dol_mel 0 expects that the application has already initial-

ized its own graphics window for data output if there is to be one. If there is

to be no user data window, the application must still initialize the graphics

subsytem with noport 0 and _nopen O.

The first time pnLdopa.el 0 is called, these initialization steps are performed:

le The Panel Library sets the RGB color stored in nine locations of the

colormap. The indices used can be changed by setting the panels color

variables before pnl_dopanel 0 is caned. The application programmer

can change the color of control panels by setting the RGB colors stored

in these locations or by changing the indices in the color variables after

initialization has been performed.

o Each panel created previously with pnl_mkpanel 0 is then initialized.

The limits (minx, maxx, rainy, maxy) of the world space coordi_

nates are calculated. This is the bounding box of an actuators in the

panel, plus a small border value.

o If the application programmer has not set the height or width (h and

w) of the panel (in screen space), the library determines the panel's

size based on the world space limits and the panel's scalefactor (ppu

or pixels per unit).

1.5. CONNECTING THE PANEL LIBRARY TO THE REST OF YOUR PROGRAM13

4. If the programmer has not set the panel's screen space origin (x and

y), the library places the panel to the right and aligned at the top

of the application's data window, or below and aligned on the left of

the previous panel if there is one. If a panel would extend off the

screen on the bottom, the library attempts to place it to the right of

the topmost, rightmost panel. If a panel extends oft"the right of the

screen, the library offsets it down and to the right 20 pixels from the

upper right of the data window.

5. A window for this panel is then created and constrained to maintain

its aspect ratio. On IRIS 4D's, the window is placed in doublebuffered

colormap mode. An orthographic viewing transformation mapping the

panel's world space limits to the edges of its window is created and

saved in vobj.

6. After all panels are initialized, the library queues the LEFTMOUSE,

LEFTSHIFTKEY, RIGHTSHIFTKEY,CTRLKEY, (LEFTCTRLKEY

and RIGHTCTRLKEY on the IRIS 4D's) devices and ties the MOU-
SEX and MOUSEY devices to the LEFTMOUSE device. If the work-

station is running the NeWS (4sight) window manager, the WIN-

FREEZE and WINTHAW devices are queued to allow the application

to continue running when a panel has been iconified.

1.5 Connecting The Panel Library To The Rest

Of Your Program

In any real Panel Library application, there must be some connection be-

tween the actuators that you create and the rest of your application. There

are four basic ways of using the Panel Library in order to accomplish this

goal."

1. using globals

2. using actionfuncs

3. using the return value of pnl_dopanel

4. using additional data.

Which of these is preferable depends on your specific needs--very often more

than one might be used in a single program.

14 CHAPTER 1. INTRODUCTION

1.5.1 Global Actuators and Panels

If a given actuator is global, then it is possible for any procedure to examine

any of its fields. A particularly useful one to examine is the val field of any

actuator. For most actuators, mousing it will change the val field according

to the mouse position and the type of the actuator. To give some common

examples: a toggle button's val will be either 0 or 1, while a sHder's val field

will be a floating point number somewhere between that slider's minval and
maxval.

In other cases, the data relevant to a particular actuator is more complicated

that just a single floating point number. This is true for actuators like pucks

and typeins. For them, there is a special macro PNL_ACCESS defined in

panel.h to extract the relevant information.

The D.demos directory has many examples of using certain fields of global

actuators to affect the rest of the program.

1.5.2 Action Functions

Panel Library actuators and panels have as fields three pointers to functions

that are called when the user operates the mouse. These are called the action

function pointers and are named downfunc, activefunc, and upfunc. The

application programmer assigns the addresses of user-defined functions to

these pointers. Two of them are called when the mouse button makes the

transition from up to down or down to up, and the third is called whenever
the mouse button is down.

These action functions (actionfuncs) are for the sole use of the application

program. Every actuator and every panel has three actionfuncs; for the

purposes of this discussion, we will focus on the actionfuncs of actuators

only.

For most actuators 1 the downfunc is called when that actuator is first

selected (i.e. when the left mouse button is pressed while the mouse cursor

is on top of that actuator), the activefunc is called as long as the mouse

button is held down, and the upfunc is called when the mouse button is

released. Naturally, these functions only get called if the programmer has

assigned (pointer to function) values to them.

1The most important exception is pnl_typein--the documentation for pnl_typein ex-

plains when it calls its actionfuncs.

1.5. CONNECTING THE PANEL LIBRARY TO THE REST OF YOUR PROGRAM15

In all cases, if an action£unc is called, it is passed a single argumentEa

pointer to the actuator that was responsible for that actionfunc being called.

That actionfunc can then examine any field of the actuator in order to per-

form its job. Among other things, this means that the same actionfunc can

be used for different actuators, and that actuators with actionfuncs generally

don't need to be globals.

Since actionfuncs get called from within pnl_dopanelO, the downfunc (for

instance) will not get called as soon as the mouse button is pressed, but

rather during the first call to pnl_dopanel AFTER the mouse button is

pressed. While in most cases the actionfunc will be caned almost instantly, if

there is time-consuming processing happening in the main loop, there might

be some noticeable delay.

The D.demos directory has many examples of using actionfuncs.

1.5.3 PnLdopanel 0 return value

Every can to pnl_dopanel 0 returns the actuator that was active during that

can, or NULL. In some cases, the programmer might want to test this

value to perform some action. In addition, a Panel Library global variable

(pnl_funcmode, pnl_fltstdoum, pnl_ca_ etc) can be examined.

Note: in most cases using actionfuncs (described above) is more flexible and

modular. Using pnl_dopaneI's return value should only be using in special

circumstances, not as the default technique.

1.5.4 Using additional data

There are two separate mechanisms provided for associating additional data

with a given actuator. Every actuator has a field named u (for user data)

which is not used by the Panel Library at an. The programmer can use

this field to hold immediate data, or cast it to be a pointer to an arbitrary
function. The second method uses a macro caned PNL_MKUSERACT to

extend an actuator with additional fields.

Examples of both of these techniques can be found in the D.demos directory.

16 CHAPTER 1. INTRODUCTION

1.6 Signal Handling

The Panel Library provides a special actuator type for handling UNIX signal

interrupts received from other processes. This actuator is called pnl_signal.

One instance of phi_signal is created for each signal that is to be caught.

Handling functions for the signal may be attached to the actuator's down-

func and activefunc active functions. A pointer to the signal actuator is

returned by the next call to pnl_dopanel. See the description of the phi_signal

actuator for more detailed information (not available in this draft).

1.7 Scripting

The Panel Library has the capability to save user interactions to a script file

on disk for later replay. In all but a few cases, when reading from a script

file, the user interface will behave exactly as though the user were operating

the mouse. Scripting is controlled by five functions, pnl_beginreadscriptO,

pnl_beginwritescriPtO, pnl_beginappendscriptO, pnl_endreadscriptO, and pnl-

_endwritescript O. A predefmed panel providing buttons activating these

functions is provided by the library and may be added to any application

by calling check this name initscriptpanel 0 when defining the application's

panels. Scripts may be interpreted in a human readable form by using the

stoa utility.

/

1.8 Script Files

Script files consist of three types of packets: mouse, delay, and state, which

are identified by reserved tokens, followed by binary data.

Mouse packets are generated whenever an actuator is "active", which usually

means that the user has selected an actuator with the mouse button, and is

still holding the button down. Mouse packets consist of the PNL..MT._MOUSE

token, the id's of the current panel and actuator, the current world coor-

dinates of the mouse in the current panel, and five bits of key state in-

formation, the values of pnl_justup, pnl_justdown, pnl_mousedown,

pnl_shiftkey, and pnl_controlkey.

Delay packets axe generated when a number of frames, or calls to pnl_dopanel 0

have occurred without writing a mouse or state packet. This allows the Panel

Library to wait while reading a script until the specified number of frames

1.8. SCRIPT FILES 17

have gone by, keeping playback of scripts roughly time-synchronous with the

recorded version. Delay packets consist of the PNL_MT_DELAY token and the

number of fames since the last mouse or state packet.

State packets attempt to save all information regarding an actuator. A

state packet consists of the PNL_MT_STATE token followed by a dump of an

actuator descriptor. If there is actuator-specific data associated with the

actuator, it follows.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Programmer Functions

• ' 19

2O CHAPTER 2. PROGRAMMER FUNCTIONS

The programmer's functions are discussed in alphabetical order, except when

grouped as in the following list. They are:

pnl_addact 0

pnl_addpanel 0

pnl_addsubaet 0

pnLdelact 0

pnl_delpanel()

pnl_dopanel 0

pnl_draurpanel 0

prd-endgroup 0

pnl_ffaaO
pnI_fizpanel 0

pnl_mkact 0

pnl_mkpanel 0

pnl_mkuseract 0

pnl_needredrawO, pnl_nserredraw

initscriptfileO, pnl_beginreadscriptO, pnl_beginwritescriptO, pnl_beginappendscriptO,

pnl_endreadscriptO, pnl_endwritescriptO, pnl_dumpstate 0

pnl_struridth 0

The most important are:

pnl_addaet 0

pnl_dopanel 0

pnl_rakaet 0

pnl_mkpanel 0

NAME

pul_addactmadd an actuator to a panel

SYNOPSIS

void pnl_addact(a, p)

Actuator *a;

Panel *p;

DESCRIPTION

Pnl_addact 0 adds an actuator to a particular panel, in these

steps:

1. The pointer to the Actuator is saved in phi_table, allowing

subsequent reference to the actuator by its id.

2. The actuator is placed at the head of the panel p's actuator

llst (al).

3. The current value of a's val field is saved as its initval for

subsequent reset operations.

4. The dimensions and offsets of a's label are calculated, based

on the panel's scalefactor (ppu, i.e., pixels per unit).

5. The actuator's addfunc is called to perform any actuator-

specific initialization.

6. If a is an automatic actuator, it is placed on the panel's

autolist.

7. If a has a key equivalent, it is placed on the Panel Library's

key list (pn/_k/) and its key device is queued.

8. The actuator is marked as needing to be redrawn.

SEE ALSO

pnl_addsubactOpnl_mkactOpnI_mkpanelO

21

22 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

pnl_addpanel--add a panel to a running application

SYNOPSIS

void pnLaddpanel(p)

Panel *p;

DESCRIPTION

Pnl_addpanel 0 is used to add a panel created with pnLmkpanel 0

to the library's list of active panels. Panels that are created

before the first call to pnl_dopanel 0 need not be explicitly added

with pnl_addpanel O. Pnl_addpanel 0 is used to add panels that

are created after the first call to pnl_dopanel O.

23

NAME

pul_addsubact--add subactuator to actuator

SYNOPSIS

void pnl_addsubact(sa, a)

Actuator *sa;

Actuator *a;

DESCRIPTION

Pnl_addsubact 0 adds a subactuator, sa, to an actuator, a. Po-

tentially, any actuator may be a subactuator of any other, but

in practice certain actuators like menus, icons, and frames, are

expected to have certain other actuators, like buttons and sub-

menus, added to them. The Actuator to which the Subactuator

is being added should already have been added to a Panel with

pnl_addactO, or to another actuator with pnl_addsubact O. A sub-

actuator, once added to another actuator, is not to be added to a

panel with pnl_addactO, or vice versa. Pnl_addsubact 0 performs

these steps:

1. Pnl_addsubact 0 saves a pointer to the Subactuator in pnLtable,

allowing subsequent access to the Subactuator via its id.

2. The Subactuator is placed at the head of the Actuator's

actuator list (al).

3. The value of sa's val field is stored as initval for subsequent

resets.

4. The dimensions and offsets of the Subactuator's label are

calculated b_ed on the actuator's enclosing Panel's scale-

factor (ppu).

5. The Subactuator's addfunc is called to perform any actuator-

specific initialization.

6. The actuator's addsubfunc is then called to update any

actuator-specific data structures it may have.

7. Pnl_fizact() is then called to allow the actuator to adjust its

appearance (or other internal data structures) based on its
new addition.

24 CHAPTER 2. PROGRAMMER FUNCTIONS

8. If sa is an automatic actuator it is placed on a's panel's
autolist.

9. If sa has a key equivalent, it is placed on the Panel Library's

key list (pn/_]d) and its key device is queued.

DIAGNOSTICS

Pnl_addsubact 0 prints a warning and exits if a has not been

added to a panel or another actuator.

SEE ALSO

pnl_addact O ,pnl_mkact 0

25

NAME

pnl_delact()--delete an actuator and its subactuators

SYNOPSIS

void pnl_delact(a)

Actuator *a;

DESCRIPTION

Pnl_delact 0 removes an actuator a and all its subactuators (as

found in its al) from the panel library's data structures. The

actuator's entry in pnl_table is set to NULL, and then pnl_delaet 0

is called for each of the subactuators in al. If a is a top-level

actuator (originally added to a panel with pnl_addactO) , it is

removed from its panel's al. If a is a subactuator of some other

actuator, it is removed from that actuator's al if it appears there.

If a is a member of a group it is removed from it. If a has a

delfunc it is then called. The default delfunc frees storage used

for the actuator-specific data structure. A is deleted from its

panel's autolist if it is there, and deleted from the libraries list of

actuators with key equivalents (pnl_kl), unqueueing its associated

key device if it appears there. Finally, the space referenced by a

is freed.

DIAGNOSTICS

warning: wanky group ring for act < label > when a cycle is

detected in the group list.

SEE ALSO

pnl_delpanel(}

26 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

pn1_delpanel0--delete a panel and its actuators

SYNOPSIS

void pnl_delpanel(p)

Panel *p;

DESCRIPTION

Pnl_delpanel 0 may be called at any time to delete a panel from
the library. The actuators added to the panel are also deleted au-

tomatically using pnl_delact O. Since memory used by the panel

structure is freed, a panel should not be referenced after it has

been deleted.

SEE ALSO

pnl_delaetO

27

NAME

pnl_dopanel--initialize and update panels

SYNOPSIS

Actuator *pnl_dopanel 0

DESCRIPTION

Pal_dopanel 0 performs the event processing and controls the dis-

play updates for all panels and actuators created for an applica-

tion. Pal_dopanel 0 is intended to appear once inside the appli-

cation's main event loop.

1. The first time pal_dopanel 0 is called, it creates the windows

that are to contain the panels, and performs other initial-

ization for panels (see Initialization).

2. Pal_dopanel 0 then gets an "action" from the mouse or an

event script (see Scripting). If an actuator has been selected,

it is saved as the current actuator (available as pal_ca), and

pal_dopanel 0 calls its newvalfunc, allowing the actuator

to update its val field based on mouse clicks or movement.

3. Pal.dopanel 0 then calls the newvalfunc of any "automatic"

actuators (actuators that had automatic set to true when

they appeared in an pal_addaet 0 call).

4. The drawfunc for each panel is called. The default draw-

func for panels fills the panel's window with the background

color, and then calls the drawfunc of each actuator in its

actuator list (al) whose dlrtycnt is non-zero. The dirtycnt
of these actuators is then decremented.

5. If an event script is being written, pal_dopaneI 0 writes the

current acti6n to disk.

On Iris 4D's, when a mouse button has just gone up, pal_do-

panel() attempts to process another action from the event

queue and returns to step 2.

Normally pal_dopanel 0 returns control to the calling program ff

no input events are available for processing. Setting pal_block to

TRUE will cause pal_dopanel 0 to block until an event is read

from the event queue. A caught signal will interrupt a blocked

call to pnLdopanel O. (See Signal Handling).

28 CHAPTER 2. PROGRAMMER FUNCTIONS

RETURN VALUE

Pnl_dopanel 0 returns a pointer to current actuator or NULL.

Pnl_dopanel 0 may be made to always return NULL by means

of the pnl_dopanel_return_mode global variable.

BUGS

Because actuator descriptors contain pointers to other data struc-

tures, loading state information from script files does not always

work correctly, and can cause segmentation violations.

Setting a panel's x or y to zero wilI not have the desired effect of

placing the window at the bottom or left hand edge of the screen

because pnl_dopanel 0 uses zero as indication that the user has

not expressed an interest in the paners position and places it au-

tomatically according to the rules described in the Initialization

section. W and h should also not be set to zero, but this is not

as likely to occur intentionally.

SEE ALSO

phi_block

29

NAME

pul_&awpanel--&aw all panels

SYNOPSIS

dra ane|0vo|d pnl- wp

DESCRIPTION

pnLdra_vpanel 0 calls the drawfunc for every panel, which by

default calls the drawfunc for every actuator whose dlrtycnt is

non-zero. If pn, Ldol_nelO has not been called yet, p_-drau_panelO

calls it to perform initialization.

RETURN VALUE

void

SEE ALSO

pnl_dopaneIO

30 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

pnl_dumppanelmcreate file defining current panel configuration

SYNOPSIS

Boolean pnl_dumppanel()

DESCRIPTION

Pnl_dumppanel 0 is not really implemented and has been replaced

by the panel editor. See the README section.

31

NAME

pnl_endgroup--signalendof groupof actuators

SYNOPSIS

void pnl_endgroup(p)
Panel *p;

DESCRIPTION

Pnl_endgrouPO is used to signal the end of a group of actua-

tors. Some actuators, by their nature, form groups that must

interact. For example, radio buttons, when selected, deselect all

other radio buttons in their group. Radio buttons are automati-

cally added to the current group when they are added to a panel

To have more than one group of radio buttons on a panel, use

pnl_endgroupO to end the current group. Radio buttons added

subsequently will appear in their own group.

SEE ALSO

phi_radio_button

32 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

pnl_fixact--update actuator

SYNOPSIS

void pnl_flxact(a)

Actuator *a;

DESCRIPTION

PnLfizact 0 performs generic updating of an actuator's internal

state to reflect changes that the application may have made to

it. For example, pnLfizact 0 should be called after setting an

actuator's val field. This notifies the Hbrary that the actuator

should be redrawn in its new position. Some actuators perform

more extensive reorganization when "fixed". For example, Strip-

charts copy the contents of their val field into their array of

stored points, and delete the oldest value there. Typeouts insert

the string pointed to by their str field into their text buffer.

RETURN VALUE

void

SEE ALSO

pnl-._panel 0

33

NAME

pnl_fixpanel--updat e panel

SYNOPSIS

void pnl_flxpanel(p)

Panel *p;

DESCRIPTION

Pnl_fizpanel 0 causes the Panel Library to recalculate the size

and location of a Panel based on any changes that may have

been made to the visibility (visible field), iconification, size, or

location of actuators in that panel. Explicit changes made to the

location or size of the panel (x, y, w and h) should be followed

by a call to pnl_fi.vpanel O.

SEE ALSO

pnl_fizaet 0

34 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

pul mkactncreate Actuator descriptor

SYNOPSIS

Actuator *pnl_mkact(inltfunc)

void inltfunc();

DESCRIPTION

Pnl_mkact 0 performs the following operations:

i. Pnl_mkact 0 allocates space for an actuator descriptor.

2. A number of fields in the descriptor are initialized to their
default values.

3. Functions providing default behaviors for some of the func-

tion pointers (initfunc_ plckfunc, dumpfunc, and load-

func) in the descriptor are assigned, as is the actuator's

default label position (labeltype).

4. Pnl_mkact 0 then calls the function whose address is pro-

vided by its argument |nitfunc, which customizes the fields

of the descriptor for the specific type of actuator it is to rep-

resent. Because this customization function is provided as

an argument, a programmer may add new types of actua-

tors to his application without changing the Panel Library
itself.

RETURN VALUE

returns pointer to created Actuator.

SEE ALSO

pnl_addactOPnl_mkpanel 0

35

NAME

pnl_mkpanelmcreate Panel descriptor

SYNOPSIS

void pnl_mkpanel()

DESCRIPTION

Pnl_mkpanel(} performs the following operations:

.

2.

.

Pnl_mkpanel 0 allocates space for a Panel descriptor.

The descriptor is placed on the Panel Library's llst of pan-

els (pnl_pO , and its address is stored in phi_table, allowing

subsequent reference to the panel to be made by its id.

A number of fields in the descriptor are initialized to their

default values. Among these are the location and size of the

panel, fields x, y, w, and h, which are initialized to zero. If

the application programmer changes these values, the panel

library will not attempt to automatically place and size the

panels.

RETURN VALUE

returns pointer to the new Panel structure.

SEE ALSO

pnl_dopanel 0

36

NAME

pnl.mkuseract; PNL_MKUSE1LkCTmcreate actuator with extra

storage for user data

SYNOPSIS

Actuator *pnl_mkuseract(size, inltfunc)

int size;

void (* initfunc)();

struct useract *PNL_MKUSERACT (useract, initfunc)

useract- name of user structure

void (* initfunc)();

DESCRIPTION

Pnl_mlcaseract 0 returns a pointer to an Actuator structure that

has extra storage following contiguously. It is intended to allow

the programmer to build "useracts" that appear like normal actu-

ators to the Panel Library, but when accessed by user code reveal

extra user fields. PNL_MKUSERACT 0 is a macro that conve-

niently calculates the size of the useract and casts the pointer

returned by pnl_mlcuseract 0 to that type.

RETURN VALUE

returns pointer to newly created user data structure.

DIAGNOSTICS

Warning: size in pnl_mkuseract 0 smaller than an actuator.

SEE ALSO

pnl_mlcact(), and the demo program in src/D.demos/eric.c

CHAPTER 2. PROGRAMMER FUNCTIONS

37

nanle

pnl_needredraw; pnl_userredraw--save data window REDRAW

events

SYNOPSIS

void pnl_needredraw 0

short pnl_userredraw()

DESCRIPTION

Pnl_needredraw 0 is used to express an interest in REDRAW

events for the application's data window(s). After needredraw 0 is

called, the library will not discard REDRAW events that are for

non-panel windows, but will instead requeue any such event if it

is encountered while processing mouse events. The programmer

who needs to process REDRAW events for the application's data

window(s) then uses pnl_userredraw 0 to check whether the next

event in the event queue is such a REDRAW. Pnl_userredraw 0

is intended to appear once inside the application's main event

loop.

RETURN VALUE

returns the identifier of the user window receiving the REDRAW.

38 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

initscriptfile; pnhbeginreadscript; pnl_beginwritescript; pnl_begin-

appendscript; pnl_endreadscript; pnl_endwritescript; pn1_dumpstate---

control creation and use of script files

SYNOPSIS

void initscriptflle()

Boolean pnl_beglnreadscript (name)

char *name;

Boolean pnl_beginwritescript (name)

char *name;

Boolean pnhbeginappendscript (name)

char *name;

Boolean pnl_endreadscript (name)

char *name;

Boolean pnl_endwritescript (name)

char *name;

void pnl_dumpstate()

DESCRIPTION

These routines control the generation and consumption of script

files (see Scripting).

Initscriptfde 0 creates a predefined panel to control the following

scriptfile functions.

If the library is not currently writing a script, pnLbeginreadscript 0

opens for reading the file whose pathname is specified as a pa-

rameter. Pnl_beginreadscript 0 sets the file pointer back to the

beginning of the file. The library then begins to read packets

from the script, processing mouse events as though they were

performed by the user.

If thelibrary isnot currentlyreading a script, pnl_beginwritescript 0

opens for writing the file whose pathname is specified as a pa-

rameter. If another file is already open, it is dosed. If the file

already exists, it is overwritten. Subsequent mouse events are

written to the file as they are processed by the library.

Pnl_beginappendscript 0 behaves like pnl_beginu_ritescript 0 but

instead of overwriting an existing file, new mouse events are ap-

pended to it. In the special case of the input scriptfile name being

the same as the file specified as a parameter to pnLbeginappendscript O,
new mouse events are added after the last event read from the

input script. This is intended to allow primitive editing of script-

files.

Pnl_endreadscript 0 discontinues reading of a scriptfile, if it is

currently happening. The scriptfile remains open with its file

pointer located after the last event read.

Pnl_endwritescript 0 discontinues writing of a scriptfile if it is

currently happening. The scriptfile is dosed.

Pnl_dumpstate 0 dumps the current state of all actuators on all

panels to the current scriptfile, opening it if needed. Later read-

ing of the state information will cause the actuators to assume

the state they had when dumped.

RETURN VALUE

these functions return TRUE upon successful completion, or

FALSE otherwise.

BUGS

pnl_dumpstateO: because actuator descriptors contain pointers

to other data structures, loading state information from script

files does not always work correctly, and can cause segmentation

violations.

39

40 CHAPTER 2. PROGRAMMER FUNCTIONS

NAME

pnl_strwidthureturn width of string in panel coordinates

SYNOPSIS

pnl_strwldth(p, s)

Panel *p;

char *s;

DESCRIPTION

Pnl_strwidth 0 returns the width of a string in panel world space

coordinates, much as the Iris Graphics Library call strwidth 0

does, but bases its computations on the character width of the

standard font and the panel's ppu (pixels per unit) field. This

is to allow the calculation of string widths before a window for

the panel has been created.

RETURN VALUE

returns the length of the string s in world coordinates and 0 for

the NULL string.

Chapter 3

Actuators

3.1 Overview of Actuator Types

The Panel Library provides the following types of actuators.

Buttons

SHders

Palettes

Pucks

Other Valuators

Dial

Slideroid

Meters

Strip Charts

Text Manipulators
Mouse

Compound Actuators
Multislider

Grouping Actuators
Frame

Icon

Cycle
Scroll

Menus

Signal
New Actuators

Viewframe

41

42 CHAPTER 3. ACTUATORS

These actuator types are introduced briefly below, and described in detail

in the section following.

3.1.1 Buttons

Buttons are the most basic actuator provided by the Panel Library. They

turn on, they turn off.

3.1.2 Sliders

Sliders are continuous one-dimensional controllers. The current value of the

slider is controned by and reflected by the position of a slider bar within

a bounding rectangular region. In general, the user changes the value of

the slider by mousing (depressing the mouse button) within the rectangular

region. The bar jumps to the mouse location and then follows subsequent
mouse motion until the mouse button is released. If the user runs the bar

up against the "stops", mouse motion in the opposite direction results in

bar motion immediately; in this way the bar wKl no longer line up with the

mouse, but will continue to follow its motion.

3.1.3 Palettes

Palettes operate identically to sliders, but have no bar to indicate their

current value. Their background is a palette of adjacent colors from the

colormap.

3.1.4 Pucks

Pucks are continuous two dimensional controllers. The current value of a

puck is controlled by and reflected by the position of a puck icon within a

rectangular (square by default) bounding region, or, in the case of floating

and rubber pucks, its position relative to a small "home" rectangle. "-

3.1.5 Other Valuators

Dial

The dial is a continuous rotary controller. The current value of the dial is

controlled by and reflected by the angular position of a mark which moves
around the dial's circular face. The face rests on a rectangular background.

3.1. OVERVIEW OF ACTUATOR TYPES 43

The user changes the value of the dial by clicking within the background.

The dial mark snaps to the line connecting the center of the dial and the

mouse position, and then follows the mouse as the user moves it.

Sliderold

A slideroid is a one-dimensional continuous controller. It provides differ-

ential and fine control over a numeric readout. Slideroid has no graphical

representation of its value; instead of moving a puck or slider bar, the user

mouses in small control regions to alter the actuator's value.

3.1.6 Meters

Meters are output-only actuators designed to resemble mechanical analog

electrical measttring devices.

3.1.7 Strip Charts

Strip charts are rectangular plotting regions used to display a history of data

values. As data values are added to the strip chart, they are plotted along

the ordinate. The position along the abscissa reflects the order in which the

data values are presented to the strip chart. Strip charts automatically scroll

to display the most recently added data.

3.1.8 Text Manipulators

The Panel Library provides actuators to display and read text. Typein gets

text from the user, Typeouts display and allows selection of mnlti-line text

buffers in a scrolling window. Labels display short text strings in a fixed

position in a window.

3.1.9 Mouse

The Panel Library provides a special invisible actuator that returns the

mouse position and allows the programmer to attach functions to the mouse
buttons.

3.1.10 Compound Actuators

The Panel Library supports compound actuators, or actuators to which sub-

actuators have been added. Programmers may build their own hierarchical

44 CHAPTER 3. ACTUATORS

actuators using this capability, adding functionality by attaching one kind

of working actuator under another that has some other desirable property.

The grouping actuators are used this way. The Panel Library also provides

some compound actuators that have already been assembled and may be

operated as a single unit like the simple actuators described above.

Multlslider

The multislider resembles a slider, with the ability to contain additional

slider bars. The bars are manipulated independently and may have their

own action functions.

Grouping Actuators

The grouping actuators allow the programmer to treat a number of actuators

as a single actuator, and to modify the behavior of existing actuators.

Frame

A frame is the basic grouping actuator. Frames are used to impose a new

viewing transformation on subactuators. Actuators drawn inside a frame

may have their own scalefactor and origin. Manipulations applied to the

frame are passed on to subactuators, for example, it the frame is made in-

visible, all subactuators disappear as well; if the frame is moved, its contents

move, or if the frame is made unselectable, no actuator inside it may be

selected. Frames are used instead of panels when a separate IRIS window is
not desired.

Icon

An icon takes a single actuator and adds a momentary iconification behavior

to it. That is, the icon appears on a panel as a small rectangle until selected

with the mouse, whereupon it changes into its other visible form, to wit,

that of its subactuator.

Cycle

A cycle displays one of a number of actuators that have been added to it. The

user may click buttons to cycle left or right through the list of subactuators. _

Scroll

A scroll is a grouping actuator that provides a means for scrolling back and

forth over the area of a large group of actuators. Actuators are added to

scrolls just as they are to frames, but the scroll has a fixed size, normally

smaller than the frame required to display full-sized versions of the subac-

tuators would be. The scroll displays a portion of the larger "frame" thus

3.1. OVERVIEW OF ACTUATOR TYPES 45

created and the user may operate sliders to scroll back and forth to reveal

other parts of the control panel

Menus

The Panel Library menu actuator is a region of the screen that contains

subactuators, much as a frame does. However, inside a menu, subactuators

become active just by dragging (moving with the mouse button down) the

mouse over them. Pop-up menus that spring from an on-screen icon are

provided. Programmers can use submenu actuators to build nested menus.

3.1.11 New Actuators

Viewframe

Viewframe--refer to Figure 2--is available and supported, but not yet doc-

umented, except in viewframe.c on the source tape.

/

46

3.2 Actuator Descriptions

Table of Contents

Buttons

pnl_button

pnLtoggle_button

pnl_wide_button

phi_radio_button

phi_left_arrow_but ton

phi_right_arrow_but ton

pnl_up _arrow _button

phi_down_arrow_but t on

pnl _left_double .arrow _button

phi_right_double_arrow_button

phi_up_double_arrow_button

pnl_down_double_arrow_button

Sliders

pnl_slider

pnl_vs]ider

pnl_hslider

pnl_filled_s]ider

pnl_filled_vslider

pnl_fil]ed.hsllder

pnl_dvs]ider

pnl_dhsllder

Palettes

pnLpalette

pnl_vpalette

pnl_hpalette

CHAPTER 3. ACTUATORS

3.2. ACTUATOR DESCRIPTIONS

Pucks

pnl_puck

pnl_floating_puck

pnl_rubber_puck

Other Valuators

pnLdial

pnl_slideroid

Meters

pnl_meter

pnl_analog meter

pnLanalog_bar

Strip Charts

phi_strip_chart

phi_scale_chart

Text Manipulators

pnhtypein

pnl_typeout

pnllabel

Mouse

phi_mouse

Compound Actuators

Multislider

pnLmultislider

pnl_multislider_bar

pnLmultisIider _open_bar

Grouping Actuators

47

48

pal_frame

pal_icon

pal_cycle

pal_scroll

Menus

pal_menu

pal_icon_menu

pal_sub_menu

pal_menu_item

New Actuators

Viewframe

CHAPTER 3. ACTUATORS

3.3. BUTTONS

3.3 Buttons

Buttons are the most basic actuator provided by the Panel Library.

turn on, they turn off.

NAME

pnl_button

DESCRIPTION

pal_button is intended to operate as a simple momentary push-
button

VALUE

val is set to maxval if the mouse button is down, mlnval oth-
erwise.

APPEARANCE

pal_button appears as a non-highlighted rectangle if val equals

minval, and is highlighted otherwise.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

49

They

50

NAME

pnl_toggle_button

VALUE

val alternatesbetween mlnval and maxval upon mouse clicks.

APPEARANCE

phi_toggle_button appears as a phi_button when its val is mlnval,

and is highlighted with a cross from corner to corner otherwise.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

CHAPTER 3. ACTUATORS

3.3. BUTTONS

NAME

pnl_wide_button

VALUE

val is set to maxval if the mouse button is down, minval oth-
erwise.

APPEARANCE

Pnl_u_ide_button appears as a wide non-highlighted rectangle with

its label centered upon it if val equals mlnval. Otherwise,

phi_wide_button becomes highlighted, with its label drawn in in-
verse.

ADDING OPERATIONS

Phi_wide_button increases its width based on the length of its

label if necessary.

FIXING OPERATIONS

Phi_wide_button increases its width based on the width of its label

(as calculated by labeldimensionsO) if necessary.

51

52 CHAPTER 3. ACTUATORS

NAME

pnl_radio_button

VALUE

val is set to maxval (1.0) when phi_radio_button is clicked upon,

at which time any other radio buttons in its group is set to min-

val(0.0).

ADDING OPERATIONS

Phi_radio_button is added to the paners current group.

FIXING OPERATIONS

none

3.3. BUTTONS 53

NAME

pnlleft_arrow_button

pnl_rlght_arrow_but ton

pnl_up_arrow_button

pnl_down_arrow_but ton

pnl/eft_double_arrow_button

pnl_rlght_double_arrow_but t on

pnl_up_double_arrow_but ton

pnl_down_double_arrow_button

VALUE

val is set to maxval (1.0) if the mouse button is down, mlnval

(0.0) otherwise.

APPEARANCE

These button's appear as non-highlighted rectangles containing

a triangle or two pointing in some direction if val is zero, and

are highlighted with the triangles in an inverse color otherwise.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

BUGS

These should be implemented as "picture buttons" that take

polygons to draw on their surfaces.

54 CHAPTER 3. ACTUATORS

3.4 Sliders

Sliders are continuous one dimensional controllers. The current value of the

slider is controlled by and reflected by the position of a slider bar within

a bounding rectangular region. In general, the user changes the value of

the slider by mousing (depressing the mouse button) within the rectangular

region. The bar jumps to the mouse location and then follows subsequent
mouse motion until the mouse button is released. If the user runs the bar

up against the "stops", mouse motion in the opposite direction results in

bar motion immediately; in this way the bar will no longer line up with the

mouse, but will continue to follow its motion.

ACTUATOR-SPECIFIC DATA

• ypedef s_ruc$

int mode ;

float finefactor;

float valsave;

Coord wsave;

Coord bh;

} Slider;

mode:

fmefactor:

dilferentialfactor:

V_save:

wsave:

bh:

MODES

current slider mode

ratio of slider bar motion to mouse motion when in

fine control mode. Default value is

PNL_FINE_C ONTROL_FACTOR (1/20).

ratio of rate of slider bar movement to mouse motion

for differential sliders in differential mode.

Default value is PNL_DIFFERENTIAL_FACTOtt (1/10).

temp store for value between calls (internal)

temp store for slider bar position.

height of slider bar. Default value is

PNL _SLIDER_B AI__HEIGHT (PNL_SLIDER_HEIGHT/20).

These modes may be or'ed together.

#define PNL_SM_NORMAL OxO

#define PNL_SM_DIFFERENTIAL Oxl

#define PNL_SM_FINE_CONTROL Ox2

#define PNL_SM_NOSNAP Ox4

3.4. SLIDERS 55

PNL_SM_NOKMAL:

No special modes.

PNL_SM_FINE_CONTROL:

All sliders have normal and free-control modes. Fine control is

selected by depressing the control key on the keyboard. Fine

control mode implies PNL_SM_NOSNAP behavior, but does not

explicitly set the PNL_SM._NOSNAP bit in mode.

PNL_SM_NOSNAP:

All sliders have no-snap mode to avoid moving the slider bar

when first clicking on the slider. Set no-snap by or'ing PNL_SM_NOSNAP
with mode.

PNL_SM.DIFFEKENTIAL:

Indicates differential mode, see pnl_dvslider, pnl_dhslider.

BUGS

Fine control can not be selected by setting a slider's mode field
to PNL_SM_FINE_CONTROL.

56 CHAPTER 3. ACTUATORS

NAME

pnl_slider

pnl_vsllder

pnl_hsHder

pnl_fllled_slider

pnl_fllled_vslider

pnl_fllled_hslider

Pal_vslider is a vertical slider, and pal_hslider operates from side

to side (horizontally). Pal_slider is a synonym for pnLvslider.

The filled sliders operate identically, and have a different ap-

pearance.

ACTUATOR-SPECIFIC DATA

See pal_slider.

VALUE

The value of the slider is the value of the endpoints, set by mln-

val and maxval, linearly interpolated by the position of the

slider bar within the bounding rectangle of the slider.

APPEARANCE

These sliders are long rectangles containing a bar running across

them. The bar slides up and down to reflect the slider's chang-

ing value. No highlighting is made when the slider is selected.

Filled sliders draw the background of the slider on the low side

of the slider bar is a contrasting color, providing a stronger (but

anisotropic) visual cue for position.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

3.4. SL1DERS 57

NAME

pnl_dvslider

pnl_dhslider

These are "differential" sliders. Pnl_dvslider moves vertically,

pnl_dhslider horizontally. At the high end of these sliders there

are two additional mouse sensitive regions. One is for fine control

and the other is for differential or motorized control. Dragging

after clicking in the fine control region moves the slider bar in the

ratio of finefactor to the mouse motion. Dragging after clicking in

the differential region moves the slider bar at a rate proportional
to the mouse motion.

VALUE

The value of the slider is the value of the endpoints, set by min-

val and maxval, linearly interpolated by the position of the

slider bar within the bounding rectangle of the slider. The value

can also be set by using the fine control and differential control

regions of the slider (see above).

APPEARANCE

The differential sliders look like phi_slider, with two additional

regions at the high end. These regions are marked with dia-

mond shapes, one open, one filled. The filled diamond marks the

fine control region, and the open one the differential. Clicking

on these regions highlights them and draws the diamond in an
inverse color.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

58 CHAPTER 3. ACTUATORS

3.5 Palettes

Palettes operate identically to sliders, but have no bar to indicate their

current value. Their background is a palette of adjacent colors from the

colonnap.

ACTUATOR-SPECIFIC DATA

typedef struct

int mode;

float finefactor;

float valsave;

Coord wsave;

Coord bh;

} Palette;

mode:

fine factor:

differentialfactor:

valsave:

wsave:

bh:

current palette mode
ratio of value motion to mouse motion when in

fine control mode. Default value is

PNL_FINE_CONTROL_FACTOR (1/20).

unused

temp store for VALUE between calls (internal)

temp store for mouse position.

unused

note: the Palette typedef is actually defined in terms of the Slider type-

def; that detailiseliminated from the declaration given here for clarity,see

panel.h for actual declaration.

MODES

These modes may be or'ed together.

#define PNL_SM_NORMAL OxO

#define PNL_SM_DIFFERENTIAL Oxl

#define PNL_SM_FINE_CONTROL Ox2

#define PNL_SM_NOSNAP Ox4

PNL_SM_NORMAL: No specialmodes.

PNL_SM_FINE_CONTROL: Palettes have normal and fine-control

modes. Fine control is selected by depressing the control key on

3.5. PALETTES 59

the keyboard. Fine control inhibits setting of output value at

mouse down (like NOSNAP mode).

PNL_SM_NOSNAP: Not Implemented (except as with flue con-

trol).

PNL_SM_DIFFERENTIAL: Not Implemented.

BUGS

Fine control can not be selected by setting a palette's mode field
to PNL_SM_FINE_CONTROL.

60 CHAPTER 3. ACTUATORS

NAME

pnl_palette

pnl_vpalette

pnl_hpalette

Prd_vpalette is a vertical palette, and pnl_hpalette operates from

side to side (horizontally). Phi_palette is a synonym forpnl_tT_alette.

ACTUATOR-SPECIFIC DATA

???

VALUE

The value of the palette is the value of the endpoints, set by

mlnval and maxval, linearly interpolated by the position of the

mouse within the bounding rectangle of the palette.

APPEARANCE

These sliders are long rectangles filled with a contiguous range

of colors taken from the colormap. The indices of the colors at

the ends of the palette correspond to the palette's mlnval and
maxval. There is no indication of the current value or selection

status of the palette.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

3.6. PUCKS 61

3.6 Pucks

Pucks are continuous two dimensional controllers. The current value of a

puck is controlled by and reflected by the position of a puck icon within a

rectangular (square by default) bounding region, or, in the case of floating

and rubber pucks, its position relative to a small "home" rectangle.

ACTUATOR-SPECIFIC DATA

• ypedef struck

floa_ x, y;

Puck;

x: the current x position of the puck.

y: the current y position of the puck.

note: the Puck typedef is actually defined in terms of the Point typedef; that

detail is eliminated from the declaration given here for clarity, see panel.h
for actual declaration.

BUGS

Pucks do not have a fine-control mode.

Access to a puck's x and y values must be made through the non-

orthogonal PNL_ACCESS macro, or by using a specially declared

pointer. This makes them harder to use, and different from, other

actuators that just return one value through their val field.

Pucks have the same output scaling in both x and y.

62

NAME

pnl_puck

Phi_puck constrains a puck icon to a rectangular region of the
screen.

VALUE

The x and y values of the pnl_puck are the rain and max values,

linearly interpolated by the position of the puck icon relative to

the left-right and bottom-top edges of the bounding region.

APPEARANCE

Pnl_puck is a large square region containing a puck icon re-

sembling a compass rose. No highlighting is made for selected

phi_puck.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

BUGS

Non-square bounding regions for pnLpuck give non-uniform out-

put value scaling.

CHAPTER 3. ACTUATORS

3.6. PUCKS 63

NAME

pnl_floating_puck

pnl_rubber_puck

Pnl_floating_puck uses a small rectangle as a home position for

the puck shape, and allows the user to move the puck al] over

the screen. Pnl_rubber_puck is similar to pnl floating puck,

but draws a rubber band line back to the home position.

VALUE

The x and y values of pnl_floating_puck and pnl_rubber_puck

are proportional to the distance the floating puck icon has been

moved from the home position. When first clicked upon, these

puck icons have not moved and thus their x and y values are

ZerO.

APPEARANCE

Pnlfloating_puck is a puck icon shape (resembling a compass

rose) on a small square region just large enough to contain it.
When clicked upon, the background is highlighted, the icon is

drawn in a contrasting color and a copy of the icon shape is also

drawn in the workstation's overlay bitplanes. This overlay image

moves to follow the mouse position. The normal mouse cursor

is shut off. Phi_rubber_puck uses a different shape (resembling

a cross) for the puck icon, and in addition to the overlay image,

draws a rubber band line from the image back to the home posi-

tion, providing a stronger visual cue as to which puck is active.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

64 CHAPTER 3. ACTUATORS

3.7 Other Valuators

pnl_dial

The dial is a continuous rotary controner. The current value of the dial is

controlled by and reflected by the angular position of a mark which moves

around the dial's circular face. The face rests on a rectangular background.

The user changes the value of the dial by clicking within the background.

The dial mark snaps to the line connecting the center of the dial an the

mouse position, and then follows the mouse as the user moves it.

ACTUATOR-SPECIFIC DATA

Sypedef sSzuct {

in_ mode;

float finefactor;

floa$ valsave;

Coord wsave;

float winds;

} Dial;

mode:

fine factor:

valsave:

wsave:

winds:

MODES

current dial mode

ratio of dial bar motion to mouse motion when in

fine control mode. Default value is

PNL_FINE_CONTROL_FACTOR (1/20).

temp store for value between calls (internal)

temp store for dial mark position.

number of full (360 degree) rotations of the

dial corresponding to full range output.

Default value is PNL_DIAL_WINDS (0.88).

These modes may be or'ed together.

#define PNL_SM_NORMAL OxO

#define PNL_SM_DIFFERENTIAL Oxl

#define PNL_SM_FINE_CONTROL Ox2

#define PNL_SM_NOSNAP Ox4

PNL_SM_NORMAL: No special modes.

3. 7. OTHER VALUATORS

PNL_SM_FINE_CONTROL: Palettes have normal and fine-control

modes. Fine control is selected by depressing the control key on

the keyboard. Fine control inhibits setting of output value at

mouse down (like NOSNAP mode).

PNL_SM_NOSNAP: Not Implemented (except as with fine con-

trol).

PNL_SM_DIFFEI_NTIAL: Not Implemented.

VALUE

The value of the dial is the mlnval and maxval fields linearly

interpolated by the angular position of the dial mark. When the

mouse button goes down, the dial mark lines up with the ray

running from the center of the dial to the mouse position. The

mouse may be moved far from the dial to achieve finer control

over the angular position of the dial mark (and hence, of the

dial's output value). Coupled with fine control mode, a dial can

be used this way to adjust a variable to one part in 10000. After

running up against the "stops", rotation in the opposite direction

results in dial motion immediately; in this way the dial mark may

no longer point at the mouse, but the dial will rotate as expected.

APPEARANCE

Pal_dialisa circlerestingon a rectangularbackground. A thin

rectangle running from the center to the edge of the circle marks

the dial's position. The location of the base positions, or end

stops, of the dial are determined by the number of "winds" it

takes to run over its fun range. The middle of the range always

falls at the top of the dial. If winds is greater than two, there

will be other values corresponding to the mark being straight up

as weU. Phi_dial does not highlight to reflect selection status.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

BUGS

65

66 CHAPTER 3. ACTUATORS

Fine control can not be selected by setting a dial's mode field to
PNL_SM_FINE_CONTROL.

If an application is updating the screen at a low frame rate,

phi_dial can get confused about how far the mouse has moved.

Clicking and rapidly moving the mouse down or off to the side will

probably not work, and, if the mouse goes past "zero" degrees

(straight down), the dial may not process that correctly, and

jump to an unexpected position.

3.7. OTHER VALUATORS 67

NAME

pnl_slideroid

Pnl_slideroid is a one-dimensional continuous controller. It pro-

vides differential and fine control over a numeric readout. Prd_-

slideroid has no graphical representation of its value; instead of

moving a puck or slider bar, the user mouses in small control

regions to alter the actuator's value. The control regions are

strictly analogous to those provided bypnl_dvslider and pnl_dhslider.

Pnl_slideroid has an explicit fine control mode, which decreases

sensitivity to mouse motion on both inputs. A reset button is

provided to set pn1_slideroid's value to its initval. Another float-

ing point variable may be reset to an arbitrary value at this time

as well.

ACTUATOR-SPECIFIC DATA

Zypedef s_rucZ

in_ mode;

Boolean finemode, rese_mode;

floa_ *rese_arget, rese_val;

floa_ valsave;

Coord wsave;

} Slideroid;

mode:

fmemode:

resetmode:

resettarget:
resetval:

valsave:

wsave:

MODES

current slideroid mode.

fine control mode.

reset mode (TRUE ==> reset).

address of variable to reset when resetting actuator.

value to assign to contents of resettarget.

temp store for value between calls (internal)

temp store for mouse position (internal).

There are no programmer-accessible predefined constants for slid-

eroid modes. This is a bug. Internally they are very similar to

those for sliders, see slideroid.c.

VALUE

68 CHAPTER 3. ACTUATORS

Pnl_slideroid has two mouse sensitive control regions. One is for
fine control and the other is for differential or motorized con-

trol. Dragging after clicking in the fine control region changes

the output value of pnLslideroid in the ratio of finefactor to the

mouse motion. Dragging after clicking in the differential region

increments the value at a rate proportional to the mouse motion.

Two other regions set fine control mode and reset the actuator.

In fine control mode, sensitivity to mouse motion in all control

operations is reduced.

APPEARANCE

Pnl_slideroid is a rectangular region containing a floating point

readout of its value, a separate exponent field to display an ap-

propriate power of ten, two labeled areas, "F" and "R" for fine

control mode and reset operations, and two control areas marked

with diamond shaped icons, one open, one filled. The filled di-

amond marks the fine control region, and the open one the dif-

ferential. Clicking on these regions highlights them and draws

the diamond in an inverse color. The labeled fields are also high-

lighted when active.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

3.8. METERS 69

3.8 Meters

Meters are output-only actuators designed to resemble mechanical analog

electrical measuring devices.

NAME

pnl_.meter

pnl_analog_meter

pnl_analog_bar

Pal_meter is a synonym forpal_analog_meter. Pal_analog_bar op-

erates identically but has a slightly different appearance.

VALUE

These actuatorsare insensitiveto mouse input.

APPEARANCE

Pal_analog_meter is a semicircular region on a rectangular back-

ground. A thin rectangle represents the meter's needle, which

swings back and forth from center of the bottom of the semicir-
cle.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

70 CHAPTER 3. ACTUATORS

3.9 Strip Charts

Strip charts are rectangular plotting regions used to display a history of data

values. As data values are added to the strip chart, they are plotted along

the ordinate. The position along the abscissa reflects the order in which the

data values are presented to the strip chart. Strip charts automatically scroll

to display the most recently added data.

ACTUATOR-SPECIFIC DATA

Sypedef s_ruct {

int firs_p_, las_pt;

Boolean Bind_Low, Bind_High;

float *y;

ActuaZor *lowlabel, *highlabel;

} Stripchart;

firstpt:

lastpt:

Bind_Low:

Bind_High:

y:
lowlabeh

highlabeh

index in storage array of first point to be plotted,
this is the oldest data value.

index in storage array of last point to be plotted,
this is the newest data value.

when false, allows the low data limit to auto-range.

when false, allows the high data lhnit to auto-range.

pointer to data storage array.

label actuator used to display the low data limit.

label actuator used to display the high data limit.

3.9. STRIP CHARTS 71

NAME

pnl_strip_chart

pnl_scale_chart

Phi_strip_chart is the basic strip chart, pnl_scale_chart automat-

ically adjusts its high and low limits to maximize vertical reso-

lution. Their fixfmlcs take the value of their val field and put

it into their internal data storage array, scrolling their display if

necessary to plot it.

VALUE

Strip charts are output-only actuators. The val field is used to

write data into the strip chart, see fixing operations below.

APPEARANCE

Strip charts are light rectangles with data values plotted across

them using a heavy dark line. There are labels indicating the

data values corresponding to the bottom and top of the rectangle.

ADDING OPERATIONS

When added to a panel,phi_strip_chartallocatesspaceforPNL_-

STRIP_CHART..NPTS (default50) data values.Italsocreates

the labelactuatorsthat willserveas the data limitlabels,and

adds them to itself,thereby placingthem on itsactuator list

(AL).

FIXING OPERATIONS

Fixing phi_strip_chart causes the current value ofval to be copied

into the strip chart's data value store. If there are PNL_STRIP_-

CHART_NPTS already stored, the oldest is discarded.

BUGS

The number ofsaved data pointsshouldbe settableby the user.

72 CHAPTER 3. ACTUATORS

3.10 Text Manipulators

These actuators display and read text. Pnl_typein gets text from the user,

pnl_typeout displays and allows selection of multi-line text buffers in a scrolling

window. PnLlabel displays short text strings in a fixed position in a window.

NAME

pnl_typein

A pnl_typein is used to acquire text input from the user. It is

supplied with a proto-string argument that appears as the de-

fault input. After selecting the typein, the user may delete, or

backspace over the default string to replace it with his own typed

input.

ACTUATOR-SPECIFIC DATA

Sypedof stzmct
char *s_r;

ins Ion;

} Typein;

str: the string entered, also used as the default string.

len: the rn_Tirmlrn length of the entered string.

VALUE

Pnl_typein returns the string entered by the user. This is accessed

through the actuator-specific data, not the val field.

3.10. TEXT MANIPULATORS 73

NAME

pnl_typeout

Pnl_typeout displays multi-line text buffers in a scrolling window.

The user operates an elevator and scroll buttons to position the

text in the window. The user may select text by pointing and

dragging in the window.

ACTUATOR-SPECIFIC DATA

typedef struct {

int mode;

char *bur ;

char *delimstr;

int start ;

int dot ;

int mark;

int col, lin;

int len;

int size;

Coord ch, cw, cd;

} Typeout ;

mode: typeout modes

buff text buffer

delimstr: characters that serve as delimiters in automatic word select mode.

start: the index of the first character to display.

dot: the current selection point.

mark: the last selection point (where mouse went down).

col, lin: size of the typeout text window, in columns and lines of text.

len: number of characters in buffer.

size: w_Tim,,m buffer length.

MODES

These modes may be or'ed together.

#define PNL_TOM_NORMAL OxO0

#define PNL_TOM_NOCURSOR OxOl

#define PNL_TOM_NOREGION Ox02

74 CHAPTER 3. ACTUATORS

PNL_TOM_NORMAL: no special modes, cursor and region vis-

ible.

PNL_TOM_NOCURSOR: do not draw cursor rectangle at dot.

PNL_TOM_NOREGION: do not highlight text between dot and
mark.

VALUE

The val field of pnl_typeout is unused. Pnl_typeout displays a per-

centage of a text buffer. To change the text that is displayed, the

programmer may change the contents of the buffer, or change the

value of the START field in the actuator-specific data structure.

APPEARANCE

Pnl_typeout is a light rectangle, with text inside drawn dark. A

thin rectangtdar stripe runs along the right edge. The ends of

the stripe are marked with double arrow buttons.

SPECIAL FUNCTIONS

Pnl_typeout provides the tprint 0 (cf) call to append text to the

end of the typeout's text buffer and position the buffer in the

scrolling window so that the newly added text is visible.

3.I0. TEXT MANIPULATORS

NAME

phi_label

Phi.label is intended for short, single line text display. Text is

&awn with no special outline in a dark, contrasting color on the

normal panel background.

VALUE

The val field of phi_label is unused.

APPEARANCE

Phi_label text looks like the labels for other actuators.

ADDING OPERATIONS

none

FIXING OPERATIONS

none

75

76 CHAPTER 3. ACTUATORS

3.11 Mouse

NAME

pnl_mouse

Prd_mouse is a special invisible actuator that returns the mouse

position and allows the programmer to attach functions to the
mouse buttons.

ACTUATOR-SPECIFIC DATA

ypedef sl;rac

Coord x;

Coord y;
} House ;

x: the x coordinate of the mouse in pixels relative to screen origin

y: the y coordinate of the mouse in pixels relative to screen origin

VALUE

Phi_mouse returns the position of the mouse in screen coordinates

relative to the screen origin when the mouse button is depressed

in a user window. Mouse position data will continue to be re-
turned until the mouse button is released even if the mouse is

moved out of the user window. Phi_mouse is not activated when

the mouse is clicked in a control panel window.

APPEARANCE

none

ADDING OPERATIONS

When added, phi_mouse allocates space for its actuator-specific

data structure and registers itself with the Panel Library as

phi_mouse_act (a Panel Library global variable).

3.12. COMPOUND ACTUATORS 77

3.12 Compound Actuators

The Panel Library supports compound actuators, or actuators to which sub-

actuators have been added. Programmers may build their own hierarchical

actuators using this capability, adding functionality by attaching one kind

of working actuator under another that has some other desirable property.

The grouping actuators are used this way. The Panel Library also provides

some compound actuators that have already been assembled and may be

operated as a single unit like the simple actuators described above.

3.12.1 Multislider

NAME

pnl_multlslider

Pnl_multislider resembles phi_slider, with the ability to add ad-

ditional slider bars. The bars are manipulated independently and

may have their own action functions. When created, pnl_multislider

makes a number of sliderbars as specified in the actuator-specific

data structure field N, and spaces them evenly over the range of

the slider.

ACTUATOR-SPECIFIC DATA

• ypedef s¢ruct

in¢ modo;

in_ n;

float finefac¢or;

Coord vsave;

Actuator *sa;

Coord bh;

Coord clrx0 clry, clrw.

void (*act_ype)();

} Multislider;

clrh;

i,i !

78 CHAPTER 3. ACTUATORS

mode:

n:

free factor:

v_save:

sa:

hh:

drx, dry,

drh, drw:

acttype:

MODES

multislider mode

number of sliderbars to create initially, default ???

ratio of value motion to mouse motion when in

fine control mode. Default value is

PNL_FINE_CONTROL_FACTOR (1/20).

temp store for value between calls (internal).

pointer to the last selected sliderbar.

sliderbar height.

a rectangle that bounds the area used by the
sliderbars' labels.

the actuator init function to use to create sliderbars.

Modes from these two groups may be or'ed together. Only one

of these three modes may used at a time.

#define PNL_MSM_FREEOxO0

#define PNL_MSM_ORDEREDOxOi

#define PNL_MSM_CONSTRAINEDOx02

Only one ofthesetwo modes may be used at a time.

#define PNL_MSM_ADDOx04

#define PNL_MSM_DELETEOx08

PNL_MSM_FREE: sliderbars are free to be moved anywhere on

the multislider.

PNL_MSM_ORDERED: sliderbars other than that currently be-

ing adjusted with the mouse will move to maintain their original

ordering.

PNL_MSM_CONSTRAINED: the sliderbar being adjusted will

not be allowed to move past its neighbors.

PNL_MSM_ADD: subsequent clicks in the multislider will create

and add sliderbars of type acttype to the multislider.

PNL_MSM_DELETE: subsequent clicks in the multislider will

delete the nearest sliderbar.

3.12. COMPOUND ACTUATORS 79

VALUE

Pnl_multislider takes as its current value (val) the position of the

sliderbar being manipulated. Its actuator-specific data structure

field SA is set to point to the Actuator descriptor of the sliderbar.

All sliderbars' extval fields are set to reflect their position on the

multislider.

APPEARANCE

Pnl_multislider is a long narrow rectangle identical in appearance

to Phi_slider. The interior of pnl_multislider is populated with a

variable number of sliderbars whose default height is half that of

those inside phi_slider. The sliderbars may have labels, an area

for which will be cleared by pnl_multislider.

ADDING OPERATIONS

When pnl_mslider is added to a panel, it creates a number of

slider bars specified as N (default 5) in the actuator-specific data
structure.

When subactuators are added to pnl_multislider, they take their

position on the multislider according to their extval field. Slider-

bars may not be added in between an end and an already existing

sliderbar that is positioned at the end.

FIXING OPERATIONS

When fixed, pnl_multislider calculates the smallest rectangle that

will cover all possible positions of its subactuators' labels. This
area is cleared when the multislider is redrawn.

80

NAME

pnl_multislider_bar

pnl_mult islider _open_bar

Pnl_multislider_bar and pnl_multislider_open_bar are very simple

actuators designed to serve as sliderbars in pnl_multislider. They

are basically rectangular buttons that do not change appearance

to reflect being selected with the mouse.

VALUE

These actuators do not change their value.

APPEARANCE

These actuators are featureless rectangles. PnLmultislider_bar is

darker than pnl_multislider_open_bar.

ADDING OPERATIONS

none

FIXING OPERATIONS

When fixed, pnl_multislider_bar and pnl_multislider_open_bar cal-

culate their y position based on their extval fields.

CHAPTER 3. ACTUATORS

3.12. COMPOUND ACTUATORS 81

3.12.2 Grouping Actuators

The grouping actuators allow the programmer to treat a number of actuators

as a single actuator, and to modify the behavior of exiisting actuators.

NAME

pnl_frame

Phi_frame is the basic grouping actuator. Frames are used to im-

pose a new viewing transformation on subactuators. Actuators

drawn inside a frame may have their own scalefactor and origin.

Manipulations applied to the frame are passed on to subactua-

tors, for example, it the frame is made invisible, all subactuators

disappear as well, if the frame is moved, its contents move, or

if the frame is made unselectable, no actuator inside it may be

selected.

Frames are used (instead of panels) to group actuators when you

don't want to create a separate IRIS window.

For (scant) information on phi_ viewframe, see New Actuators.

ACTUATOR-SPECIFIC DATA

typedef sCruct {

int mode;

Coord offx, offy;

Coord minx;

Coord maxx;

Coord rainy;

Coord maxy;

} Frame ;

mode:

offx, offy:

minx, miny,

mag_x, maxy:

MODES

frame modes

origin offset for frame contents

visible bounding box for all subactuators

and labels, these dimensions are mapped

to the edge of the frame.

82 CHAPTER 3. ACTUATORS

Use only one of these modes at a time.

PNL_FM_FREE: The frame will resize to accommodate its sub-

actuators.

PNL._FM_FIXED: The frame will not resize its boundary nor

rescale its subactuators.

PNL_FM._FIXED_SIZE: The frame will rescale its subactuators

to fit inside its fixed boundaries.

VALUE

Pal_frame returns the value of its current actuator, that is, the

highest-level subactuator that has returned a value.

APPEARANCE

Pal_frame is a beveled rectangle whose background color is that

of regular panels.

ADDING OPERATIONS

When pal_frame is added to a panel, it fixes itself.

When subactuators are added to pal_frame, they are added to

the frame's actuator list (AL) and fixed.

FIXING OPERATIONS

Fixing pal_frame causes it to recalculate x and y limits of its

subactuators (MINX, MINY, MAXX, MAXY in its actuator-

specific data structure). If the frame is in PNL_FM_FIXED_SIZE

mode, its scalefactor is calculated to allow all actuators to be

displayed. In PNL.FM_FREE mode, the frame itself may change

shape to accommodate any changes in the size or position of

its subactuators. In PNL_FM_FIXED mode, neither of these

adjustments is performed.

3.12. COMPOUND ACTUATORS 83

NAME

pnlJcon

Phi_icon takes a single actuator and adds a momentary iconi-

fication behavior to it. That is, the icon appears on a panel

as a small rectangle until selected with the mouse, whereupon it

changes into its other visible form, to wit, that of its subactuator.

ACTUATOR-SPECIFIC DATA

ypedef struc
inZ mode ;

Coord xs_owed, ystowed, ws_oved, hstowed;
Coord xopen, yopen, wopen, hopen;

char *labelsave ;

} Icon;

mode: icon modes.

xstowed, ystowed,

wstowed, hstowed: size ond position of the icon when iconJfied.

xopen, yopen,

wopen, hopen: size ond position of the icon when expanded.

labelsave: temporary storage for icon's label.

MODES

Use only one of these modes at a time. The newvalfunc for

phi_icon sets the icon mode so any programmer use of mode

must be re-instated after the newva_unc is called (for example

in activefunc and upfunc).

#define PNL_IH_STOWED 0xOl

#define PNL_IM_0PEN Ox02

PNL_IM_OPEN: iconcurrentlyexpanded.

PNL_IM_STOWED: icon currentlyiconified.

VALUE

Phi_icon returns the value of its subactuator. After opening the

icon (by selecting it) its subactuator is active, as though it had

been clicked upon. Both the icon and its subactuator stay active

until the mouse button is released, whereupon the icon resumes

its iconified appearance.

84 CHAPTER 3. ACTUATORS

APPEARANCE

Pal_icon is a small retangle with a label inside it, similar to

pal_wide_button.

ADDING OPERATIONS

When pal_icon is added to a panel, its label pointer is saved in

its labelsave actuator-specific data structure field.

Adding a subactuator to pal_icon causes it to be placed on the

icon's actuator list al, and to become its current actuator ca.
The subactuator is made invisible vlslble--false.

FIXING OPERATIONS

Fixing pal_icon saves its current size and position as xstowed,

ystowed, wstowed, hstowed in its actuator-specific data struc-

ture. The size of its open state is taken from the current size of

its subactuator (wopen and hopen) and xopen and yopen are

calculated so that the top of the icon and the expanded subac-

tuator coincide, with the subactuator centered on the over the
icon from side to side.

3.12. COMPOUND ACTUATORS

NAME

pnl_cycle

Phi_cycle displays one of a number of actuators that have been

added to it. The user may click buttons to cycle left or right

through the list of subactuators.

ACTUATOR-SPECIFIC DATA

ypedef struc {

int mode;

£ctuator *shiftleftbu_ton;

£ctua_or *shif_rightbu_on;

£c_uator *frame;

Alis_ *memberlis$, *curren_member;

} Cycle;

mode:

shiftrightbutton,
shiftleftbutton:

fralne:

memberlist:

currentmember:

MODES

cycle modes

button actuators to change

subactuator currently displayed.

frame, sized to accommodate largest
subactuator and the two shift buttons.

list of actuators to cycle through.

member currently displayed.

These modes are used while creating the cycle. The programmer

will not likely set the mode explicitly.

#define PNL_CM_NORMALOxO0

#define PNL_CM_UNDER_CONSTRUCTIONOxO1

PNL_CM_NORMAL: normal mode.

PNL_CM_UNDER_CONSTRUCTION: used while building the

actuator.

VALUE

Phi_cycle returns the value of its current subactuator.

85

86 CHAPTER 3. ACTUATORS

APPEARANCE

Phi_cycle is a rectangle with two arrow buttons in the upper left.

The rest of the rectangle displays the current sub-actuator.

ADDING OPERATIONS

When subactuators are added to phi_cycle, they are added to

the cycle's memberlist al and fixed. The most recently added
subactuator is the first visible. The frame's size is widened to

include the new actuator if necessary. The cycle is fixed.

FIXING OPERATIONS

When phi_cycle is fixed, the buttons are located to the right edge

of the frame, and the cycle's size is set to be equal to that of its

frArrte.

3.12. COMPOUND ACTUATORS

NAME

pnl_scroll

Pnl.scrollis a grouping actuator that provides a means for scrolling

back and forth over the area of a large group of actuators. Actu-

ators are added to phi_scroll just as they are to a frame, but the

scroll has a fixed size, normally smaller than the frame required

to display full-sized versions of the subactuators would be. The

scroll displays a portion of the larger "frame" thus created and

the user may operate sliders to scroll back and forth to reveal

other parts of the control panel.

ACTUATOR-SPECIFIC DATA

sypedef struc$

Actuator *vslider, *hslider;

Actuator *frame, *subframe;

} Scroll;

vslider,
hslider:

frame:

sub frame:

VALUE

the scrolling control sliders.

the frame containing the entire scroll.

the frame containing the added subactuators.

Phi_scroll returns the value of its current subactuator.

APPEAKANCE

Pnl_.scroll is a rectangle with long narrow sliders across the bot-

tom and along the right edge. A smaller rectangle abuts these

sliders and the top and left edges. Inside the smaller rectangle,

the scroll's added subactuators are displayed.

ADDING OPERATIONS

When pnl_scroU is added to a panel, it fixes itself.

When subactuators are added to phi_scroll, they are added to

the actuator list al of subframe. Subframe's origin offset is set

to correspond to the lower left comer of it's bounding rectangle,

as are the origin offset control sliders.

87

88 CHAPTER 3. ACTUATORS

FIXING OPERATIONS

The components of the scroll are sized and located within the

size given for the scroll actuator itself. The enclosing frame is

fixed, and then its bounding box is trimmed to eliminate mar-

gin spacing. The sliders' output values are scaled to match the

bounding rectangle of the subframe, and finally the subframe's

bounding rectangle is set to clip at its edges.

3.12. COMPOUND ACTUATORS 89

3.12.3 Menus

The actuators listed in this section provide a menu actuator that makes its

subactuators active just by dragging the mouse over them, a menu built into

pal_icon to form "pop-up" menus, a special kind of menu that pops to the

side for use as a sub-menu, and a generic menu entry.

NAME

pnl_menu

Pal_menu is a grouping actuator that displays its subactuators

in a vertical column. After clicking in the menu, actuators that

the mouse are dragged over become active. Releasing the mouse

button calls the upfunc for the currently active actuator.

ACTUATOR-SPECIFIC DATA

Zypedef sZzucZ

Coord th;

Henu;

th: title height.

VALUE

Pal_menu returns an integer corresponding to currently active
subactuator.

APPEARANCE

Phi_menu is a rectangle, wide enough for its widest menu item.

The menu items are stacked vertically.

ADDING OPERATIONS

When phi_menu is added to a panel, it widens itself to accom-

modate its label, if necessary.

When a subactuator is added to phi_menu, it is added to the

menu's actuator list al, the menu is widened to accommodate

the new subactuator if necessary, and the other subactuators are

moved to place the new one at the bottom. All the subactuators
are fixed.

90 CHAPTER3. ACTUATORS

FIXING OPERATIONS

When fixed, phi_menu fixes its subactuators and recalcu]ates its
width.

3.12. COMPOUND ACTUATORS 91

NAME

pnlAcon_menu

Pal_icon_menu is pal_menu attached to pal_icon. Pal_icon_menu

in this way inherits the behavior of expanding from a small icon

to implement a type of pop-up menu.

VALUE

Pal_icon_menu returns an integer reflecting its active menu choice.

APPEARANCE

Pal_icon_menu appears identical to pal_icon. When selected, it

appears as pal_menu.

ADDING OPERATIONS

When pal_icon_menu is added to a panel, the addfunc for pal_icon
is called. Pal_icon_menu then creates a pal_menu, and adds it as

a subactuator to itself. It then sets its current actuator ca to be

its menu.

Actuators added to pal_icon_menu after its menu has been cre-

ated are processed by the addsubfunc of pal_menu to be subac-

tuators of the menu.

FIXING OPERATIONS

Fixlngpal_icon_menu causes the menu to be fixed (the default

behavior of pal_icon).

92 CHAPTER 3. ACTUATORS

NAME

pnl_sub_menu

Phi_sub_menu behaves very similarly topnl_icon_menu. It is in-

tended to be used as a menu item in other menu lists, when

selected, it expands to right of its icon, rather than centered over
it.

VALUE

Phi_sub_menu returns an integer reflecting its active menu choice.

APPEARANCE

Phi_sub_menu appears identical topnl_icon_menu, except that its

menu appears to the right of its icon.

ADDING OPERATIONS

Whenpnl_sub_menu is added to a panel, it calls pnl_icon's addfunc,

and then creates a phi_menu, which it adds to itself, using the

addsubfunc of phi_icon. It then sets its addsubfunc to be its

own, so that subsequently added subactuators are processed dif-

ferently.

Actuators added to phi_sub_menu are added to the menu by

phi_menu's addsubftmc.

FIXING OPERATIONS

When fixed, phi_sub_menu performs the normalpnl_ieon fixing

operations and then offsets the open position to the right by

modifying xopen in the actuator-specific data structure.

3.12. COMPOUND ACTUATORS 93

NAME

pnl_menuAtem

Pal_menu_item is a kind of wide button (see pnl_uride_button)

whose color is dependent on its selection status.

VALUE

Pal_menu_item returns maxval when active (selected), minval
otherwise.

APPEARANCE

Pal_menu_item appears as a wide non-highllghted rectangle with

its label centered upon it when val equals minval. When val

equals maxval, pnl_menu_item becomes highlighted, with its la-
bel drawn in inverse.

ADDING OPERATIONS

none

FIXING OPERATIONS

When fixed pal_menu_item recalculates its width to accommo-

date a possibly changed label length.

94

3.12.4 Signal

New info to be added here.

CHAPTER 3. ACTUATORS

3.13. NEW ACTUATORS-VIEWFRAMEAND ?? 95

3.13 New Actuators-Viewframe and ??

Actuators are added to the Panel Library as the need for them arises. For

the latest information, see the source directory and the latest demos. For

example, for details on pnl_viewframe, a framing actuator that allows the

application program to draw an image within a panel, rather than as a

separate window, see viewframe.c on the source tape.

96 CHAPTER 3. ACTUATORS

Chapter 4

Structure Fields

4.1 List of Fields

The following list of individual structure fields is ordered pedagogically, and

does not reflect the order of appearance of the fields in the actual structure

definition.

Panel Fields

short id;

short gid;

short usergid;

Actuator *a;

Actuator *al;

Actuator *lastgroup;

Alist *autolist; Panel *next;

Boolean active;

Boolean enabled;

Boolean visible;

long x, y, w, h;

/* unique id */

/* window number of this panels window */

/* window number of one of the user's windows */

/* current actuator */

/* actuator list */

/* last actuator added to a group */

/* next panel in panel list */

/* currently selected */

/* selection allowed */

/* make a window for this panel */

/* screen location of the window and its size */

_ 97

98

Coordminx;
Coordmaxx;
Coordrainy;
Coordmaxy;

Coordcw,ch;

char *label;

Object vobj;

float ppu;

void (*_c)(Actuator *);

void (*drawfunc)(Pand *);

void (*downfunc)(Panel *);

void (*activefunc)(Panel *);

void (*upfunc)(Panel *);

int somedirty;

int dirtycnt;

Actuator Fields

short id;

int type;

Boolean active;

Panel *p;

Actuator *pa;

Actuator *ca;

Actuator *al;

Actuator *group;

Actuator *next;

CHAPTER 4. STRUCTURE FIELDS

/* bounding box enclosing all actuators and labds */

/* char width and height */

/* window title */

/* viewing transformations */

/* pixels per unit */

/* there is a dirty act on this panel */

/* panel needs to be redrawn */

/* unique id */

/* type id */

/* currently selected with mouse */

/* pointer to enclosing panel */

/* parent actuator */

/* currently active subactuator (if any) */

/* list of sub-actuators */

/* ring of associated actuators */

/* next actuator in p's al */

4.1. LIST OF FIELDS 99

int na; /* nmnber of sub-actuators */

Coord x, y; /* location */

Coord w, h; /* size */

float scalefactor; /* scale of subactuators */

Coord Ix, ly, lw, lh; /* location and size of label */

Coord Id; /* descender size */

char *label;

int labeltype; /* location of the label relative to the actuator */

float val;

float minval, maxval;

float initval;

float extval;

/* the value */

/* limits for val */
/* reset value */

/* value in context of parent actuator */

Device key; /* keyboard equivalent */

void (*iuitfunc)0;

Boolean (*pickfunc)(Actuator *, Panel *, Coord, Coord);

void (*addfunc)();
void

void

void

void

void

void

void

(*addsubfunc)(Actuator *, Actuator *);

(*delfunc)(Actuator *);

(*newvalfunc)(Actuator *, Panel *, Coord, Coord);
(*fixfimc)(Actuator *);

(*drawfunc)(Actuator *);

(* dumpfunc)(Actuator *, int);

(*loadfunc)(Actuator *, int);

void

void

void

(*downfunc)(Actuator *);

(*activefunc)(Actuator *);

(*upfunc)(Actuator *);

/* what I do when moused */

/* what I do while moused */

/* what I do when released */

char *u;

char *data;

int data.size;

/* pointer to arbitrary user data */

/* pointer to data peculiar to a particular actuator */

/* size of data struct plus everything it points to */

100 CHAPTER 4. STRUCTURE FIELDS

Boolean automatic;

Boolean selectable;

Boolean visible;

Boolean beveled;

int dirtycnt;

/* true ==> newvaLCunc called every dopanel */

/* false ==> unpickable, newvalfunc never called */

/* does this actuator have a visible manifestation? */

/*is this actuator got a beveled edge? */

/* damage control */

4.2.

4.2

FIELD DESCRIPTIONS

Field Descriptions

101

a

(Panel field)

Actuator *a;

A is a pointer to the Panel's current actuator. It is set in

pnl_dopaneIC). It corresponds to pnLca. The current actuator

is the highest level actuator under the mouse when the mouse

button goes down.

active

(Actuator field)

Boolean active;

Active is true when the actuator is currently being moused. It

is set in pnl_dopanel O. Whenever pnI_dopanel_) returns an actu-

ator, active is set. When the mouse button goes up, the library

sets active false, and calls the newvalfunc for the actuator one

more time. This allows the actuator to change itself and any

subactuators to their quiescent state.

active

(Panel field)

Boolean active;

Active is true when the mouse has clicked over the panel. There

need not be an active actuator in the panel.

activefunc

(Actuator field)

void (*activefunc)(Actuator *);

Actlvefunc is one of the actuator's action functions. Active-

func is called for a selected actuator whenever the mouse button

102 CHAPTER 4. STRUCTURE FIELDS

isdown. Activefunc issuppliedwith a pointerto the actuator

that isbeing processedwhen itiscalled.

see _]so

downfunc, upfunc, "Action Functions"

activefunc

(Panel field)

void (*activefunc)(Panel *);

Activefunc is one of the panel's action functions. Actlvefunc

is called for a selected panel whenever the mouse button is down.

Activefunc is supplied with a pointer to the panel that is being

processed when it is called.

see also

downfunc, upfunc, "Action Functions"

addfunc

(Actuator field)

void (*addfunc)O;

Addfunc is one of the actuator's behavior functions. An actua-

tor's addfunc is called by pnI_addact 0 after performing generic
initialization of the actuator.

see alSO

[nltfunc, pickfunc, addsubfunc, delfunc, newvalfunc, fix-

func, drawfunc, dumpfunc, loadfunc, "Behavior Functions".

addsubfunc

(Actuator field)

void (*addsubfunc)(Actuator *, Actuator *);

Addsubfunc is one of the actuator's behavior functions. An

actuator's addsubfunc is called by pnLaddsubact 0 after per-

forming generic initialization of the subactuator.

4.2. FIELD DESCRIPTIONS 103

see also

initfunc, plckfunc, addfunc, addsubfunc, delfunc, new-

valfunc, flxfunc, drawfunc, dumpfunc, loadfunc, "Behav-
ior Functions".

al

(Actuator field)

Actuator *al;

AI is the head pointer of the actuator's [[sub?]]actuator list. Sub-

actuators in al are linked through their next field. As subactua-

tors are added to most actuators with pnl_addsubactO, they are

usually added to al. Since maintaining al is the responsibility of

each specific actuator, the exact placement or even the appear-

ance of a subactuator in al is not guaranteed. AI is used by the

library to apply global operations on actuators, therefore it is

intended that each actuator appear in an al of some actuator of

[[or?l]pan .
See alSO

pnl_addsubactO, addsubfunc, next.

al

(Panel field)

Actuator *al;

AI is the head pointer of the panel's actuator list. Actuators are

added to the head of a panel's al by pnl_addactO, therefore al is

in reverse order of the sequence of pnl_addact 0 calls.

see also

pnl_addactO , pnl_addsubactO, addfunc, next.

autolist

(Panel field)

Alist *autolist;

104 CHAPTER4. STRUCTURE FIELDS

Autolist is the head pointer of a llst of actuators whose new-

valfuncs are to be called every time pnl_dopanel is called. Actu-

ators are added to autollst by pnl_addaet 0 and pnl_addsubaet 0
if their automatic field is set to true. Their newvalfuncs will

continue to be called unless their automatic or enabled fields

are set to false.

see also

pnl_addact(), pnl_addsubactO, automatic, enabled, newval-
func.

automatic

(Actuator field)

Boolean automatic;

Automatic is a boolean field indicating to pnLaddaet 0 and

pnl_addsubact 0 whether the actuator is to be added to the en-

closing panel's autollst. Automatic actuators have their new-

valfuncs called every time pnl_dopanel 0 is called. The actuator
will be treated as automatic while automatic and enabled are

set to true.

See also

pnl_addactO, pnl_addsubactO, automatic, enabled_ newval-
func.

beveled

(Actuator field)

Boolean beveled;

Actuators whose beveled field is set to true are drawn with a

beveled rectangular border.

See also

drawfunc.

4.2. FIELD DESCRIPTIONS 105

ca

(Actuator field)

Actuator *ca;

Ca is an actuator's current subactuator. Although maintenance

of the ca field is the responsibility of each actuator, ca usually

provides a pointer to the subactuator currently being manipu-

lated with the mouse, or after an actuator has become inactive,

the last subactuator selected. If not pointing directly to the ac-

tive subactuator, ca usually is part of a path to it.

ch

(Panel field)

Coord ch;

Ch is total (including descender) character height in the current

worldspace panel coordinates.

see also

C_

Cw

(Panel field)

Coord cw;

Cw is the character width in the current worldspace panel coor-

dinates.

data

(Actuator field)

char *data;

Data provides a pointer to an actuator's actuator-specific data

structure. Actuators allocate space and assign data to its address

in their initfuncs. Data must be dereferenced in order to use

some actuators. This may be done by using the PNL_ACCESS()

macro, or by declaring an a-Yiiiary pointer as in these examples.

106 CHAPTER 4. STRUCTURE FIELDS

examples

accessing actuator-specific data using PNL_ACCESS

£ctuator *a;

my_xffiPNL_£CCESS(Puck, a, x); my_y=PNL_£CCESS(Puck, a, y);

accessing actuator-specific data using an auxiliary pointer.

Actuator *a; Puck *ad;

adffi(Puck *)a->data; my_xffiad->x; my_y=ad->y;

see also

PNL_ACCESS, dataslze, |nitfunc.

dataslze

(Actuator field)

int datasize;

Dataslze is the size in bytes of the actuator-specific data struc-

ture referenced by data. It may be used by loadfunc and dump-
func to determine how much data to transfer.

See also

data, loadfunc, dumpfunc.

delfunc

(Actuator field)

void (*delfunc)(Actuator *);

Delfunc is one of the actuator's behavior functions. An actu-

ator's delfunc is called by pnl_delact 0 after performing generic

deletion processing on the library's data structures.

4.2. Fl_LD DESCRIPTIONS 107

see also

Pnl_delactO, initfunc, pickfunc, addfunc, addsubfunc, new-

valfunc, flxfunc, drawfunc, dumpfunc, loadfunc, "Behav-
ior Functions".

dirtycnt

(Actuator field)

int dirtycnt;

The dlrtycnt actuator field is used to record the number of times

an actuator must be drawn to bring it up to date in both the

front and back buffers. When an actuator changes its value,

it sets the dlrtycnt to two, indicating that both front and back
buffers are out of date. This should be done in newvalfuncs with

pnl_setdirtyO, which also sets the the current panel's somedlrty,
to indicate that a traversal of that panel's actuators is required by

the drawing function. User code should indicate that a redraw

is required by using pnl_fizact 0 which calls pnl_setdirty O. As

the actuator is drawn, dlrtycnt is decremented. Drawfuncs

generally do not redraw the actuator unless dlrtycnt is greater

than zero. Compound actuators generally propagate non-zero

dlrtycnts downward to their subactuators, so that marking a

higher-level actuator dirty will cause all its subactuators to be
drawn.

see also

PnLsetdi_y(), pnl__zactO, drawfunc_ flxfunc, newvalfunc.

dirtycnt

(Panel field)

int dirtycnt;

The dlrtycnt panel field is used to record the number of times

a panel must be redrawn to bring it up to date in both the front

and back buffers. It is set to two when a panel has been reshaped

or moved, and as a result of ca11ing pnl_fizt_nel O. When a panel

108 CHAPTER 4. STRUCTURE FIELDS

is drawn, dlrtycnt is decremented. When dlrtycnt is non-zero,

every actuator and their subactuators on the panel are drawn.

see also

pnl_fizt_neIO, drawfunc, flxfunc.

downfunc

(Actuator field)

void (*downfunc)(Actuator *);

Downfunc is one of the actuator's action functions. Downfunc

is called for a selected actuator when the mouse button goes

down. Downfunc is supplied with a pointer to the actuator

that is being processed when it is called.

see also

activefunc, upfunc, "Action Functions"

downfunc

(Panelfield)

void (*downfunc)(Panel *);

Downfunc is one of the panel's action functions. Downfunc

is called for a selected panel when the mouse button goes down.

Downfunc is supplied with a pointer to the panel that is being

processed when it is called.

See alSO

activefunc, upfunc, "Action Functions _

drawfunc

(Actuator field)

void (*drawfunc)(Actuator *);

Drawfunc is one of the actuator's behavior functions. Draw-

func does graphics drawing to paint the visual representation of

the actuator into the bitplanes.

4.2. FIELD DESCRIPTIONS 109

see A.]so

Pnl_drawactO, inltfunc_ pickfune, addfunc, addsubfunc, new-

valfunc, flxfunc, drawfunc, dumpfunc, loadfunc, "Behav-

ior Functions".

drawfunc

(Panel field)

void (*drawfunc)(Panel *);

Drawfunc is one of the Panel's behavior functions. The default

drawfunc for panels calls the drawfuncs of each of its actuators

if any of them have been marked dirty with pnl_setdirty O.

see also

inltfunc, pickfunc, addfunc, addsubfunc, newvalfunc, fix-

func, drawfunc, dumpfunc, loadfunc, "Behavior Functions".

dumpfunc

(Actuator field)

void (* dumpfunc)(Actuator *, int);

Dumpfunc is one of the actuator's behavior functions. Dump-

func is called when dumping actuator state to a script file. Note:

this feature doesn't really work in the current release of the Li-

brary.

see 8_80

inltfunc, pickfunc, addfunc, addsubfunc, newvalfunc, fix-

func, drawfunc, dumpfunc, loadfunc, "Scripting", "Behav-
ior Functions".

enabled

(Panel field)

Boolean enabled;

110 CHAPTER 4. STRUCTURE FIELDS

Enabled controls whether or not controls on a panel may be

manipulated using the mouse. Note: This feature is not imple-

mented, i.e., setting or clearing this field has no effect on Library

operation.

extval

(Actuator field)

float extval;

Extval is used to express the value of a subactuator in the con-

text of its parent actuator. For example, actuators that are

serving as sliderbars in a multislider have their extval set to

reflect their position in the multislider. Their val fields continue
to reflect their own values, for example, minval or maxval for

buttons.

see st]so

val, minval, maxval, initval.

flxfunc

(Actuator field)

void (*fixfunc)(Actuator *);

Fixfunc is one of the Actuator's behavior functions. Fixfunc

is called by pnl_fizact 0 to cause the panel to recalculate its size

and appearance based on changes that may have been made to

its value, label, or visibility of its subactuators.

see _t]SO

pnl_fizactO, initfunc, pickfunc, addfunc, addsubfunc_ new-

valfunc, flxfunc, drawfunc, dumpfunc, Ioadfunc, "Behav-
ior Functions _.

flxfunc

(Panel field)

4.2. FIELD DESCRIPTIONS III

void (*fixfunc)(Actuator *);

Fixfunc is one of the Panel's behavior functions. Fixfunc is

called by pnl_fizpanel 0 to cause the panel to recalculate its size

and appearance based on changes that may have been made to

the position or visibility of its actuators.

see also

pnl_flzpaneIO, in|tfunc, plckfunc, addfunc, addsubfunc, new-

valfunc, ilxfunc, drawfunc, dumpfunc, loadfunc, "Behav-

ior Functions".

gid

(Panel field)

short gid;

Gid is the graphics id of the window manager graphport that

the panel is drawn in.

group

(Actuator field)

Actuator *group;

The group pointer is used to implement a ring containing actu-

ators that are in a single group. Actuators are grouped to allow

them to alter one another's value when any one of them in acti-

vated. For example, (the only example, currently) radio buttons

use the group ring to unset all other members of the group when

any one of them is set. Pnl_addtogroup 0 is used by the Library to

add actuators to the currently open group,pnl_endgroup 0 closes

a group; grouped actuators subsequently added to the pane] after

a call to pnl_endgroup 0 wUl be added to a new group.

See also

phi_radio_button, pnl_addtogroup O, pnl-endgroup O , lastgroup.

112

h

CHAPTER 4. STRUCTURE FIELDS

(Actuator field)

Coord h;

H is the height, in panel world coordinates, of the actuator. Any

bevel appearing around the actuator is not included in h. H may

be changed at any time to change the height of the actuator. Use

prd_fizact0 afterchanging h.

see also

pnl_f_zactO, w, x, y.

h

(Panel field)

long h;

H is the height, in pixels, of the window the panel is drawn in.

H includes pixels used to draw the window border and titlebar.

see _t]SO

W_ X_ y.

id

(Actuator field)

short id;

Id is a unique integer assigned to Actuators and Panels at pnl_addact 0

or pnl_rakpanel 0 time. Id is used as an index into phi_table to
determine the address of Panel and Actuator structures. This is

done when playing back a previously recorded script.

see st]SO

pnl_m_nel O.

id

4.2. FIELD DESCRIPTIONS 113

(Panel field)

short id;

Id is a unique integer assigned to Actuators and Panels at pnl_ad-

dact() or pnl_mkpanel 0 time. Id is used as an index into phi_table
to determine the address of Panel and Actuator structures. This

is done when playing back a previously recorded script.

see &]so

pnLaddact O.

inRfunc

(Actuator field)

void (*initfunc)();

Initfunc is one of the Actuator's behavior functions. Initfunc

is called by pnLmkact 0 after creating space for and performing

generic initialization of the actuator structure. Since initfunc is

passed to pnLmkact 0 as a parameter, it is possible to add new

types of actuators without making any changes to the Library.

see also

PnLmkactO, iniffunc, pickfunc, addfunc, addsubfunc, new-

valfunc, flxfunc, drawfunc, dumpfunc, loadfunc, "Behav-

ior Functions".

initval

(Actuator field)

float initval;

Initval is set by pnl_addact 0 to the initial value of val. It may
be used later to reset the actuator to its initial state. The default

initial value for most actuators is mlnval.

see also

pnl_addactO,val , extval, mlnval, maxval.

key

114 CHAPTER 4. STRUCTURE FIELDS

(Actuator field)

Device key;

Key is the identifier of the key equivalent for the actuator, if any.

Pnl_addact 0 queues the device indicated by key. Depressing the

key is the same as clicking the actuator with the mouse.

label

(Actuator field)

char *label;

Label is a string that appears near or atop the actuator.

see also

labeltype_ flxfunc,pnLfizactO.

label

(Panel field)

char *label;

Label is a string that appears in the titlebar of the window in

which the panel is drawn.

labeltype

(Actuator field)

int tabeltype;

Labeltype indicates where, relative to the actuator, the actua-

tor's label should appear. Labeltype takes one of the following

value s:

PNL_LABEL_RIGHT

PNL_LABEL_RIGHT_TOP

PNL_LABEL_UPPER_RIGHT

PNL_LABEL_TOP_i_IGHT

4.2. FIELD DESCRIPTIONS

PNL_LABEL_TOP

PNL_LABEL_TOP_LEFT

PNL_LABEL_UPPER_LEFT

PNL_LABEL_LEFT_TOP

PNL_LABEL_LEFT

PNL_LABEL_LEFT_B OTTOM

PNL_LABEL_LOWER_LEFT

PNL_LABEL_BOTTOM_LEFT

PNL_LABEL_BOTTOM

PNL_LABEL_BOTTOM_RIGHT

PNL_LABEL_LOWER_RIGHT

PNL_LABEL_RIGHT_B OTTOM

PNL_LABEL_CENTER

PNL_LABEL_NORMAL

PNL_LABEL_RIGHT centers the label to the right of the ac-

tuator. The other positions follow in an anti-clockwise rotation

from that point. PNL_CENTER centers the label on the actua-

tor, and PNL_NORMAL provides no offset, positioning the label

string origin at the actuator's x and y.

see also

x, y, label.

lastgroup

(Panel field)

Actuator *lastgroup;

Lastgroup stores the address of the actuator last added to an

actuator group ring. Actuators subsequently added to this group

are inserted into the ring at lastgroup->group. Pnl_endgrouPO

sets lastgroup to NULL.

see also

pnl_addtogrouPO , lastgrouPO , group.

115

116

ld

CHAPTER 4. STRUCTURE FIELDS

(Actuator field)

Coord Id;

Ld is the size in actuator world coordinates of the actuator's

label's font's descenders (the parts of the letters that hang below

the baseline of the word). It is recalculated by pnLfizact O.

see also

lh, lw, Ix, ly

lh

(Actuator field)

Coord lh;

Lh is the size in actuator world coordinates of the actuator's

label's overall height. It is recalculated by pnl_fizact O.

see also

Id, lw, Ix, ly

loadfunc

(Actuator field)

void (*loadfunc)(Actuator *, int);

Loadfunc is one of the actuator's behavior functions. Loadfunc

is called when loading actuator state from a script file. Note: this

feature doesn't really work in the current release of the Library.

see also

initfunc, plckfunc, addfunc, addsubfunc, new-

valfunc, flxfunc, drawfunc, dumpfunc, loadfunc,

"Scripting", "Behavior Functions"

Iw

4.2. FIELD DESCRIPTIONS

Ix

ly

maxval

(Actuator field)

Coord lw;

Lx is the size in actuator world coordinates of the actuator's

label's overall width. It is recalculated by pnl_flzact 0.

see also

ld, lh, Ix, 13,

(Actuator field)

Coord Ix;

Lx is the value in actuator world coordinates of the actuator's

label x position. It is recalculated by pnl_flzact O.

see also

ld, lw, lh, ly

(Actuator field)

Coord ly;

Ly is the value in actuator world coordinates of the actuator's

label y position. It is recalculated by pnl_fzzact O.

See alSO

ld, lw, IX, 111

(Actuator field)

float maxval;

Maxval is the mAYirm,rn value an actuator's val field may take.

For continuous valuators llke sliders, maxval is used with min-

val to interpolate the value of val. For discrete controlers like

buttons, val is set to maxva] when the actuator is selected.

see also

117

118 CHAPTER 4.

val, minval, inltval, extval

STRUCTURE FIELDS

nlaxx

(Panel field)

Coord maxx;

Maxx is the m_T|ml_m extent in the x direction of any actu-

ator (including its label) on the panel. Maxx is calculated by

pnl_fizt_nel_) and takes account only of visible actuators.

see also

pnl_f_zpanelO, maxy, minx, rainy, visible

maxy

(Panel field)

Coord maxy;

Maxx is the maximum extent in the y direction of any actu-

ator (including its label) on the panel. Maxy is calculated by

pnl_fizl_nel 0 and takes account only of visible actuators.

see also

pnl_fizt_nelO, maxx, minx, rainy, visible

minval

(Actuator field)

float minval;

Minval is the minimum value an actuator's val field may take.

For continuous valuators like sliders, minval is used with nmx-

val to interpolate the value of val. For discrete controlers like

buttons, val is set to rninval when the actuator is not selected.

see also

val, maxval, initval, extval

4.2. FIELD DESCRIPTIONS

Inln.x

(Panel field)

Coord minx;

Minx is the minimum extent in the x direction of any actua-

tor (including its label) on the panel. Minx is calculated by

pnl_f_r_nel 0 and takes account only of visible actuators.

see also

pnl_fizpanelO, maxy, maxx, miny, visible

119

ndny

(Panel field)

Coord rainy;

Miny is the mlnlmllrn extent in the y direction of any actua-

tor (including its label) on the panel. Miny is calculated by

pnl_fizpanel 0 and takes account only of visible actuators.

flee alSO

pnl__nelO, maxy, maxx, minx, visible

n8

(Actuator field)

int na;

Na is the number of the actuator's subactuators.

mented by pnl_addsubact O.

See alSO

pnl_addsubact 0

It is incre-

newvalfunc

120 CHAPTER 4. STRUCTURE FIELDS

(Actuatorfield)

void (*newvalfunc)(Actuator*,Panel *,Coord, Coord);

Newvalfunc isone of the actuator'sbehavior functions.New-

valfunc iscalledviapnl_newvalact0 when an actuatorisfirstse-

lectedwith the mouse, and iscalledrepeatedlywhile the mouse

button is depressedto calculatethe value of val based on the

mouse position.W'hen the mouse button isreleased,newval-

func iscalledonce again to allow the actuator to returnto its

quiescentstate.

see _]so

Pnl_neersalactO, val, inltfunc, pickfunc, addfunc,

addsubfunc, newvalfunc, flxfunc, drawfunc, dump-

func, loadfunc, "Behavior Functions"

next

next

(Actuator field)

Actuator *next;

Next provides the link for the Panel's list of actuators, al, and

the actuator's list of subactuators, also called al. Actuators are

added to these lists by pnl_addact 0 when being added to a panel,

and by the addsubfuncs of their parent actuator when being

added to an actuator. This latter behavior allows actuators to

manage the order or appearance of subactuators in the al de-

pending on the subactuator's role in the actuator.

see a_$o

pnl_addactO , pnl_addsubactO , al

(Panel field)

Panel *next;

Next provides the link for the Library's list of panels, pnl_pl.

Panels are added at the head of the list by pnl_mkpanel O.

see also

4.2. FIELD DESCRIPTIONS

pnl_mkpanelO, al

121

P

(Actuator field)

Panel *p;

P points to the Panel the actuator is a member of. An actuator

and all its subactuators all have a pointer to the same panel.

pa

(Actuator field)

Actuator *pa;

Pa pointsto the actuator'sparent actuator.Pa isNULL ifthe

actuatorisnot a subactuator.Pa issetby pnl_addsubactO.

see 81so

pnI_addsubact 0

pickfunc

(Actuator field)

Boolean (*pickfunc)(Actuator*,Panel *,Coord, Coord);

Pickfunc is one of the actuator'sbehavior functions. Pick-

func iscalledby the Libraryand some compound actuatorslike

pal_frameto determinewhether the mouse lieswithinthe bound-

ariesofthe actuator.

See alSO

inltfunc, plckfunc, addfunc, addsubfunc, new-

valfunc, flxfunc, drawfunc, dumpfunc, loadfunc,
"Behavior Functions"

ppu

122 CHAPTER 4. STRUCTURE FIELDS

(Panel field)

float ppu;

Ppu is the current number of pixels per unit in panel world

coordinates. It is used to calculate the size of pixel oriented

dimensions (like fonts) in worldspace. It is recalculated when

panels are reshaped. Setting ppu and calling pnl_fizpanel 0 will

resize the panel.

see alSO

Ix, ly, lw, lh, ld, pnl__nel().

scalefactor

(Actuator field)

float scalefactor;

Scalefactor is a global scaling factor that is applied when draw-

ing the actuator and all its subactuators. Note: scalefactor is

known to be completely implemented only for phi_frame actua-

tors in the current release.

see also

phi_frame

selectable

(Actuator field)

Boolean selectable;

Selectable allows the actuator to be selected with the mouse.

Setting selectable FALSE causes it to be drawn with a cross-

hatched overlay. Actuators with selectable set FALSE are stKl

operated from scripts.

somedirty

4.2. FIELD DESCRIPTIONS

type

(Panel field)

int somedirty;

Somedlrty is set by pnl_setdirty 0 to indicate that there is an
actuator which needs to be redrawn somewhere on the Panel.

see 818o

pnl_setdirtyO, dirtycnt

(Actuator field)

int type;

Type is an identfier indicating what type of actuator the actua-
tor is. It is set to one of a number of manifest constants defined

in panel.h

123

u

(Actuator field) char *u;

U is a pointer provided for the user. It is used to attach an

arbitrary structure to an actuator. For simple cases using appro-

priate casts, it can hold the actual data.

upfunc

(Actuator field)

void (*upfunc)(Actuator *);

Upfunc is one of the Actuator's action functions. Upfunc is

called for a selected actuator when the mouse button goes up.

Upfunc is supplied with a pointer to the panel that is being

processed when it is called.

see also

activefunc, downfunc, "Action Functions"

124 CHAPTER4. STRUCTURE FIELDS

upfunc

(Panel field)

void (*upfunc)(Panel *);

Upfunc is one of the panel's action functions. Upfunc is called

for a selected panel when the mouse button goes up. Upfunc

is supplied with a pointer to the panel that is being processed
when it is called.

see also

activefunc, downfunc, "Action Functions"

usergid

(Panel field)

short usergid;

Usergid is the graphics id of the graphport that was the current

window when the user called pnl_mlrpanel O.

see also

pnLmkpanelO

val

(Actuator field)

float val;

Val is the curent value of the actuator. It is set by the actu-

ator's newvalfunc. For continuous valuators like sliders, val

usually interpolates minval and maxval based on the position

of the mouse within the actuator. For discrete controllers, like

buttons, val is set to maxval when the actuator is selected, and

mlnval when it is not. The programmer can set val to change

the appearance of most actuators. For the change to be visible,

pnl_ftzact 0 should be called after setting val.

See alSO

4.2. FIELD DESCRIPTIONS

mlnval, maxval, initval, extval, newvalfunc, pnl_fizact 0

125

visible

(Actuator field)

Boolean visible;

Visible controls whether or not the Actuator is drawn on the

panel it is a member of. Invisible actuators do not contribute to

calculations of the panel's extent, therefore, panels will change

size to reflect changes in the visibility of its actuators. Use

pnl_fl;ztmnel 0 after changing an actuator's visibility.

see also

p,a_f , naO

visible

(Panel field)

Boolean visible;

Visible controls whether or not the Panel is drawn. Setting

visible to FALSE will delete the window manager window for

the Panel. Making an invisible window visible will cause the

Library to create a window and draw the panel in it. When

windows are created, they are 'in front of' other windows on the

screen. Use pnl_fiwpanel 0 after changing an actuator's visibility.

vobj

(Panel field)

Object vobj;

Vobj is a GL graphics object containing the viewing transfor-

mation for the Panel. It is used by the Library to map mouse

screen location into panel world coordinates.

W

126 CHAPTER 4. STRUCTURE FIELDS

(Actuator field)

Coord w;

W is the width, in panel world coordinates, of the actuator. Any

bevel appearing around the actuator is not included in w. W

may be changed at any time to change the width of the actuator.

Use pnl_flzact() after changing w.

see &]so

pn/_f_act(),h, x, y

W

(Panel field)

long w;

W is the width in pixels of the window the Panel is drawn in.

W includes pixels used to draw the window's borders.

see &]so

h, x, y

Y

(Actuator field)

Coord y;

Y is the y position, in panel world coordinates, of the actuator

within its panel or parent actuator. Y may be changed at any

time to change the position of the actuator. Use pnl_fizact 0 after

changing y.

See also

pnl_f_actO,h , w, x

Y

4.2. FIELD DESCRIPTIONS

(Panel field)

long y;

Y is the y screen position in pixels of the window the Panel is

drawn in. Y is offset to account for pixels used to draw the

window's borders, i.e., y is the location of the outer edge of the
border.

See _t]SO

h, w, x

127

128 CHAPTER 4. STRUCTURE FIELDS

Chapter 5

Global Variables

The Panel Library uses a number of global variables to maintain and commu-

nicate its internal state. The programmer may read these variables to gain

insight into the current mode and operation of the library, and by setting

some of them, may influence the behavior of the library.

5.1 Colors

pnl_white_color

Colorindex pnl_white_color;

initial value: 0

phi_bevel llght_color

Colorlndex pnl_bevel_.light_color;

initial value: 0

phi_normal_color

Colorindex pnl_normal_color;

initial value: 0

phi_background_color

Colorlndex pnl_background_color;

initial value: 0

129

130 CHAPTER 5. GLOBAL VARIABLES

phi_other_color

Colorindex pnl_other_color;
initial value: 0

phi hlghlight_color

Colorindex pnl_highlight_color;
initial value: 0

phi_bevel_dark_color

Colorindex pnl_bevel_dark_color;

initial value: 0

pnlJabel_color

Colorindex pnlJabel_color;
initial value: 0

phi_black_color

Colorindex pnl_black_color;
initial value: 0

The Panel Library uses nine locations in the color map to store

the RGB definitions of the colors it makes available for drawing

actuators. The indices used depend on the number of available

bit planes, and are intended to make mlnlmurn impact on the

colors defined by the SGI utility makemap(1). The indices to

be used are stored in the following nine global variables the first

time pnl_dopanel 0 is called. To specify different indices, just set

them, and if desired, also set the RGB contents of those indices.

If the indices have been set to something other than zero, the

library will not touch them. This means that you can't use color

zero (BLACK) as a Panel Library color unless you set it after

the first call to pnl_dopanel O.

Phi_white_color is the brightest color, used for text and mark-

ings in highlighted regions. Phi_bevel_light_color is the very light

color used for upper-left-hand sides of bevels. PnLnormal_eolor

is a light color used to draw actuators. Regions drawn with

phi_normal_color are generally mouse-sensitive. PnLbackground-

_color is a medium tone used to draw the background of panels.

5.2. FILL PATTERN 131

Phi_other_color provides a darker contrast to phi_normal_color,

and is used to draw backgrounds and other parts of actuators.

Phi_highlight_color is a dark, saturated color used to draw actu-

ators in their alternate state. Pnl_highlighLcolor should be used

sparingly for high-visibility control panel elements. Phi_bevel_dark-

_color is the very dark color used for the lower-right-hand sides

of bevels. Phi_label_color is nearly black, and is intended to give

readable contrast for text on all lighter colors. Phi_black_color is

essentially black, and used for outlines and other markings.

5.2 Fill Pattern

pul_fade_pat ternAndex

short pnl_fade_pat tern_index;

initial value: PNL_FADE_PATTEItN_INDEX

pul_fade_pat tern_size

short pnl_fade_pat tern_size;

initial value: PNL_FADE_PATTEILN_SIZE

pul_fade_pattern

short pnl_fade_patternD;

initial value: PNL_F&DE_P.kTTEItN

The library draws, over unselectable actuators with a filled rect-

angle drawn using a fill pattern. Pnl_fade_pattern_indez is the

index of the hardware fill pattern register to be used. Change

pnI_fade_pattern_indez before calling pnl_dopanel 0 to use a differ-

ent register. Phi_fade_pattern_size is the fill pattern size selector

value for the library's fade pattern. Phi_fade_pattern is the array

definition of the pattern.

132 CHAPTER 5. GLOBAL VARIABLES

5.3 Panel and Actuator Structures

phi_table

char *pnI_table[PNL_TABLE_SIZE];
initial values: NULL

pnl_id

int pnlJd;

initial value: 0

Phi_tableholds pointersto allPanelsand Actuators. Itisused

primarilytofindthe currentlocationofa structurewhen reading

scripts.Pnl_idisthe index intothe phi_table.Every time a panel

iscreatedusingpnl_mkactO, or an actuatorisadded to a pand

using pnl_addactO, the slotin phi_tableindicatedby pnLid is

used to storethe pointerto the new descriptor,and then pnl_id

isincremented.

pnl_pl

Panel *pnl_pl;
initial value: NULL

Pnl_pl is a pointer to the head of the library's "panel list". Panels
are linked in this list via their next field. All panels appear in

this list. The end of the list is signified by a NULLnext field.

pnl.kl

Alist *pnl_kl;
initial value: NULL

Pn/_]d is a pointer to the first list cell in the library's list of

actuators with key equivalents. An Alist ceil consists of two

pointers, data, and next, in the spirit of a traditional lisp cons

ceil. A list of ceUs is connected via theirnext pointers, while

their contents are reached via the individual data pointers.

5.3. PANEL AND ACTUATOR STRUCTURES 133

pnl_cp

Panel *pnl_cp;

initial value: NULL

Pal_cp indicates the current (active) panel. It points to the Panel

structure describing the panel the mouse was in when the mouse

button was clicked. When reading from a script, it points to the

panel containing the active actuator as specified by the script (if

any). At other times, pal_cp is NULL.

see also

pnl_ca

pnl_ca

Actuator *phi_ca;

initial value: NULL

Pal_ca indicates the current (active) actuator. It points to the

Actuator structure describing the highest level actuator the mouse

was in when the mouse button was clicked. That is, when clicking

a compound actuator, pal_ca holds the address of the compound

actuator's descriptor, not that of any on the compound actuator's

subactuators. When reading from a script, pal_ca points to the

active actuator as specified by the script (if any). At other times,

pal_ca is NULL. Phi_ca is the value that pal_dopanel() returns.

Note: Pal_ca can be NULL while pal_cp is not if the mouse has

hit a panel background.

Note: Future versions of the Panel Library may set pal_ca to

the lowest level actuator upon which the mouse is clicked, rather

than the highest.

pnl_cp_save

134

Panel *pnl_cp_save;
initial value:NULL

pnl_ca_save
Actuator *pnl_ca_save;
initial value:NULL

pnl_ca_active.save
Boolean pnl_ca_actlve_save;
initial value:FALSE

pn1_cp_active.save

Boolean pnl_cp_active_save;

initial value: FALSE

CHAPTER 5. GLOBAL VARIABLES

These variables are used to temporarily retain the library's state

when reading from a script, an_cp_save and pan_ca_save save the

current pane] and current actuator, while pan_ca_active_save and

pnl_cp_active_save save the state of their ACTIVE field.

pnl_mouse_act

Actuator *pnl_mouse_act;

initial value: NULL

Pan_mouse_act contains a pointer to the mouse actuator, if one

has been created by the application programmer. Pan_mouse_act

is set by creating a mouse actuator with pal_mkact(pan_mouse),

and adding the returned actuator to a panel.

5.4 Positions and Dimensions

pn]_ox;

Screencoord pnl_ox;

5.4. POSITIONS AND DIMENSIONS 135

initial value: none defined

pnl_oy;

Screencoord pnl_oy;
initial value: none defined

Pnl_oz and pnl_oy store the origin of the last panel to be cre-

ated. They are used when the Hbrary automatically positions

a subsequently added panel. The library will attempt to place

the upper-left corner of newly added panel just below the screen

position specified by pnl_oz and pnl_oy.

pnl.mx;

Screencoord pnl_.rrtx;
initial value: none defined

pnl my;

Screencoord pnl_my;
initial value: none defined

Phi_rex and pnLmy contain the mouse position in absolute screen

coordinates. These variables are updated while the mouse button

is down, and once more when the button goes up.

pnl_x;

Coord pnl_.x;

initial value: none defined

pnl_y;

Coord pnl_y;
initial value: none defined

Pnl_z and pnl_y contain the mouse position within the current

panel in panel world coordinates. If the mouse button went down

in an application's data window, pnl_z and pnLy give the mouse

136 CHAPTER 5. GLOBAL VARIABLES

position in absolute screen coordinates. These variables are up-

dated while the mouse button is down, and once more when the

button goes up.

Note: Pn/_z, and pnl_y should probably give the mouse position

relative to the origin of the applications data window's when not

in a panel.

pul_char_threshold

float pnl_ehar_threshold;
initial value: PNL_CHAR_THRESHOLD

Pnl_char_threshold indicates the lowest value for any panel's PPU
field for which its text will be draw as text characters. Panels that

have been resized so that their PPU is smaller the phi_char_threshold

will have their text fields drawn as filled rectangles colored with

prd_other_color.

NOTE: Someday the library wKl support scalable text, and this

disgusting hack will no longer be required.

5.5 Scripting

pul_readscript

Boolean pnl_readscript;

initial value: FALSE

pul_writescript

Boolean pnl_writescript;
initial value: FALSE

pul_scriptinfd

int pnl_scriptinfd;

5.5. SCRIPTING 137

initial value: 0

pnl_scriptoutfd

int pnl_scriptoutfd;
initial value: 0

pnl_scriptinfile

char *pnl_scriptinflle;
initial value: _PANEL.SCRIPT _

pnl_scriptoutfile

char *pnl_scr|ptoutflle;
initial value: _PANEL.SCRIPT _

Pnl_readscript is true when the library is reading a script, and

is false otherwise. Pnl_writescript is true when the library is

writing a script, and is false otherwise. Pnl.scriptinfd and the

prd_scriptoutfd are the files descriptors of the input and out-

put scriptfiles. If no file is open for reading or writing, one or

the other of these variables will be zero. Pnl_scriptinfde and

pnl_scriptoutfile are copies of strings forming pathnames for suc-

cessfully opened script files.

int pal frame.number

long int pnl_frame_number;
initial value: 0

pal_delay

int pnl_delay

initial value: 0

pal_ignore_delay

Boolean pnlAgnore_delay

initial value: FALSE

Pal_frame_number counts the calls to pnl_dopanel(}, or frames,
that have occurred since the last time the mouse button when

138 CHAPTER 5. GLOBAL VARIABLES

up. When writing a script file, a delay token and the value of

pal_frame_number is written to the file when the mouse button

goes down. When the library is reading a script, encountering a

delay token sets pal_delay to the stored value. The library then

suspends reading until pal_frame_number EXCEEDS pal_delay.

This has the effect of keeping the real-time playback behavior

of the application roughly the same as when recorded. Setting

pal_ignore_delay disables suspension of script playback.

NOTE: Clearing pal_ignore_delay shortly after a delay token has

been encountered can cause an un-natural pause in the next

mouse gesture. To avoid this use logic similar to that of setig-

noredelay() in script.c.

pnl_action_source

int pnl_action_source;

initial value: PNL_SRC_QUEUE

Pal_action_source is used to control the caching of mouse events

so that the library read from script and live mouse input simulta-

neously. Pal_action_source takes the value of PNL_SRC_QUEUE
or PNL_SRC.SCRIPT.

pnl_delayvirgin

Boolean pnl_delayvlrgin;
initial value: TRUE

This flag is set when beginning to write a script to avoid writing

an initial delay token to the script file.

5.6 Library State

pnl_virgin

5.6. LIBRARY STATE 139

Boolean pnl_vlrgin;
initial value: TRUE

Phi_virgin is true until the first time pnl_dopanel 0 is called. Mod-

ifying the value of this variable in not recommended.

pnl_saveuserredraw

Boolean pnl_saveuserredraw;

initial value: FALSE

Pnl_saveuserredraw controls the processing of REDRAW events

intended for one of the user's graphics windows. If false, user

REDRAW events are simply consumed by the library. If true,

the events are requened so that the user has a chance to check

for them with the pnl_userredraw 0 function.

pnl_winsave;

int pnl_wlnsave;
initial value: none defined

Pnl_winsave saves the gid of the currently active user window

when pnl_dopanel 0 is called. Just before pnl_dopanel 0 returns,

the window specified by pnl_winsave is once again made active.

pRl_justdown;

Boolean pnl_justdown;
initial value: none defined

pnl_justup;

Boolean pnl_justup;
initial value: none defined

pnl_mousedown;

140 CHAPTER 5. GLOBAL VARIABLES

Boolean pnl_mousedown;
initial value: none defined

These three variables reflect the current mouse button state.

They are updated once per ca]] to pnl_dopanel O. They are stored

in script files and restored on playback. Pnl_fl_stdoum and pnl_justup

are true for one ca]] to pnl_dopanel 0 when the button first changes
state. Pnl_mousedoum is true when the mouse button is down.

pnI__funcmode

int pnl_funcmode
initial value: PNL__FCNM..NONE

Pnl_funemode is set to reflect the context in which an action func-

tion is called, it allows action functions to modify their behavior

based on whether they are being called as a down-, active-, or up-

func. Pnl_funemode takes the value PNL_FCNM_NONE, PNL_-

FCNM_DO WN, PNL_FCNM_A CTIVE, or PNL_FCNM_UP.

pn]_shiftkey

Boolean pnl_shiftkey
initial value: FALSE

pnl_controlkey

Boolean pnl_controlkey;
initial value: FALSE

Pnl_shiflkey and pnl_controlkey reflect the state of the shift and

control keys on the keyboard. They are saved to and restored

from script files.

pnl_dont_draw

5. 6. LIBRARY STATE

Boolean pnl_dont_draw;
initial value: FALSE

141

Setting pal_dont_draw to true disables graphical updating of all

panels. This is intended to be used to temporarily avoid the

overhead of drawing and displaying control panels in applications

where maTimllm graphical performance is required.

NOTE: The main performance penalty associated with the Panel

Library is waiting for panel windows to return from a call to

swapbuffers. Since only one window from each process can swap

on a given vertical retrace, the 1TmTimnm frame rate for a Panel

Library application is 60/(N÷1), where N is the number of panels

with dirty actuators on them. To maximize frame rate, minimize

N by animating as few actuators as possible, and by setting the

VISIBLE field of unneeded panels to false.

pnl_beveled

Boolean pnl_beveled;
initial value: TRUE

Pal_beveled provides global control over the generation of beveled

edges. Setting pal_beveled to false inhibits bevels, providing com-

patibility with earlier relases of the library.

pnl_dopanel_ret urn_mode

|nt pnl_dopanel_ret urn_mode;
initial value: PNL_D_M..B.ETURN_PNL_CA

Pal_dopaneLreturn_mode controls the value returned by pal_dopanel.

Usually pal_dopanel returns the address of the current actuator

when an actuator is being moused, and NULL otherwise. Applica-

tions wishing to deactivate the normal functioning of the library

may wish to set pal_dopaneLreturn_mode to PNL_DRM_RETURN_NULL.

In this state the pal_dopanel always returns NULL.

142 CHAPTER 5. GLOBAL VARIABLES

phi_panel_bell

Boolean pnl_panel_bell;
initial value: TRUE

Pnl_paneLbell controls whether the keyboard bell is rung when

the user mouses a panel with selectable set to FALSE. Pnl_paneLbell

being true implies that the bell will be rung.

Chapter 6

Behavior Functions

initfunc, pickfunc, newvalfunc, addfunc, addsubfunc, flxfunc, draw-

func, dumpfunc, loadfunc, delfunc.

In addition to the actionfuncs discussed in 1.5.2, the panel library uses point-
ers to functions to control most of the behavior that make actuators different

from each other. In most cases, the default functions will be just fine, and

this section can be skipped for the novice user. If you think that you might

need to change any of these function pointers, see if you can use actionfuncs

instead. If not, consider saving the original value of the function pointer,

and calling that from within the function you write. Only in extreme cases

should it be necessary to provide a totally new function.

A design concept of the Panel Library is the use of indirect functions to

provide behavior that is specific to a particular type of actuator, while

letting static code in the library perform generic functions. For example,

when pnl_addact 0 is called, generic modification of the Panel Library data

structures containing actuators is performed, followed by execution of the
actuator's addfunc.

The following lists the behavior functions, and gives a brief description of

their use and responsibilities. This information is intended to guide the

programmer in the development of new actuators.

initfunc

Initfunc takes an Actuator structure that has had its fields ini-

tialized to standard values, and customizes it to reflect the prop-

erties of a particular type of actuator. The standard initfuncs

143

144 CHAPTER 6. BEHAVIOR FUNCTIONS

are declared globally and are used by application developers as

the argument to pnl_mkact 0 to specify which type of actuator to
instantiate.

RESPONSIBILITIES

Initfunc is responsible to set the type, w, and h fields of the
actuator.

Inltfunc sets the value of the behavior function fields to point to

functions to implement the behaviors. Behavior functions fields

left unassigned are ignored by the library.

The initfunc allocates space for actuator-specific data structures

and initializes the fields in it. Data holds the pointer to this

space, and datasize its size.

pickfunc

The pickfunc examines the mouse position within the panel or

parent actuator and determines whether the mouse currently "se-

lects" the actuator. Most actuators use the _hitact 0 function

provided by the library which simply compares the mouse posi-

tion against the actuator's bounding rectangle.

newvalfunc

Each actuator is expected to provide a function for determining

the value of its val field. This function is given the address of

the actuator being processed, the active panel, and the mouse x

and y values. By using this information and the values of global

variables describing mouse state, the newvalfunc determines its
actuator's new value.

RESPONSIBILITIES

Newvalfunc is responsible to behave nicely if called with active

false. This is to give actuators a chance to change their value
when the mouse has been released.

IN COMPOUND ACTUATORS:

Newvalfunc usually calcttlates x and y coordinates relative to

its own origin to determine which subactuator is selected and to

propagate to its subactuators' newvalfuncs.

145

If the actuator is not active, any current subactuator is set inac-

tive and its it newvalfunc is called. Newvalfunc usually returns

with no further processing at this point.

The actuator then determines which subactuator, if any, is ac-

tive. The subactuator's selectable and visible fields are usually

required to be TRUE, and the subactuator's pickfunc may be

used. The actuator's ca field is usually set to the active subac-

tuator.

If a subactuator is active, its newvalfunc is called, using the

internal x and y coordinates mentioned above.

Some newvalfuncs calculate the subactuator's extval, or value

in the context of the enclosing actuator, at this time.

The value for the actuator itself is determined, usual]y duplicat-

ing or otherwise derived from the active subactuator's value, and
is stored in the actuator's val field.

addfunc

Addfunc is called when the actuator is added to a panel or to

another actuator as a subactuator. Addfunc usually performs

further initialization that could not be done by inltfunc because

it requires knowledge of values assigned to the actuator's fields

by the application developer. For example, addfunc for multi-

slider looks at its actuator-specific n field to determine how many

sliderbars to add to itself.

addsubfunc

Addsubfunc is called when a subactuator is added to the actua-

tor, it is therefore only used in compound actuators. Its purpose
is to link the new subactuator into the actuator structure prop-

erly, and update any actuator internal state to accommodate the

new subactuator.

RESPONSIBILITIES

If the subactuator is going to be a direct child of the actua-

tor, addsubfunc is expected to increment the actuator's na, or
number of actuator field.

L

146 CHAPTER 6. BEHAVIOR FUNCTIONS

Addsubfune is expected to set the suhactuator's pa, or parent

actuator field to something reasonable, usually the actuator.

If the subactuator is going to be a direct child of the actuator,

addsubfunc inserts the subactuator into the actuator's actua-

tor list (al). Usually this is done at the head of the list, but

some actuators enforce a specific order in the actuator list, and

insertion may be elsewhere.

Addsubfunc then updates the subactuator if necessary to reflect

its role in the actuator; for example, menu's addsubfunc sets

the y position of the subactuator to reflect the order in which it

was added to the actuator.

It is possible that the new subactuator will have implications

for previously added subactuators, and addsubfunc may modify

them also.

flxfunc

Fixfunc re-calculates an actuator's internal data state values to

incorporate any changes that have been made by the program-

mer.

For example, the flxfunc for wide buttons recalculates the width

of the button to accommodate any change made in the length of

the label string. PnLfizactO, which calls flxfunc, calls itself

recursively on each of the actuator's subactuators before calling

the actuator's flxfunc. Therefore, a flxfunc may reliably expect

that its subactuators have self-consistent internal data state.

drawfunc

Drawfunc calls IRIS graphics library drawing routines to paint

a visible representation of the actuator into the bitplanes. In

most cases the appearance of the actuator is a function of its

value, and occasionally, the mouse state.

Chapter 7

Sequence of Calls to
Functions

The action functions--downfunc, activefunc, and upfunc--discussed in

Subsection 1.5.2 are called after execution of the newvalfunc (behavior

function, Chapter 6) for the actuator and its subactuators. Panels may have

action functions associated with them also.

Assuming that an actuator A has been added to a panel P, and has in turn

had a subactuator SA added to it, and SA, A, and P have a full complement

(all three) of action functions, the following indicates in what order the

functions are called.

evens ac$ion

mouse down

pnl_dopanel()

£->neuvaifunc(l)

Sl->newvaifunc(Sl)

S£->dotmfunc(Sl)

S£->ac$ivefunc(S£)

l->do_rafunc(l)

l->ac$ivefunc(l)

P->downfunc(P)

P->activefunc(P)

147

148 CHAPTER 7'.SEQUENCE OF CALLS TO FUNCTIONS

pnl_dopanel()
A->newvalfunc(A)

S£->nevvalfunc(S£)

Sl->activefunc(SA)

A->activefunc(A)

P->activeZunc(P)

continues while mouse button is down

pnl_dopanel()

mouse up

pnl_dopanel()

£->nevvalfunc(£)

SA->newvalfunc(SA)

SA->activefunc(SA)

A->activefunc(£)

P->activefunc(P)

A->newvalfunc(A)

SA->newvalfunc(Sl)

SA->upfunc(SA)

a->upfunc(A)

P->upfunc(P)

Appendix A. dviiris f_

Appendix A. dviiris

This isthe help filefordviiris.This unsupported utilityisused to displaydvi files

on screen. Itsuse can rcsuk indumping core. Ifyou want to tryto use iton this

manual, fzom the system prompt type:

dviiris manual.dvi

Left mouse button--use this to drag the page, and thus adjust the vertical
and horizontal position. Place the mouse over the spot you want to
move, press the left mouse button, and move the mouse to where you
want that spot to be. Release the mouse button, and the page should
be redrawn.

Middle mouse button---Used to go to the next position on the page. See the
<CR> commnd.

<SPACE>--used to go to the next page.

<BS>, ---used to go to the previous page.

<CR>---used to go to the next position on the page. The positions are stored
in registers numbered 1-9 as three groups of three (1,2,3), (4,5,6),
and (7,8,9). If you are in position I, hitting <CR> or the middle
mouse button will move you to position 2. If you are in position 3,

you will be moved back to position 1.

I, 2, 3, 4, 5, 6, 7, 8, 9--go to the position stored in the corresponding

register.

S--save the current position in a register specified by the digit key you
next press. (Thus, to save the current position as position 5,

type $5.) This does not change your position, nor does it change
your position group; if you were in position i, you remain in

position i.

P--go to a particular page. You will be prompted for the page number. If
a second number follows the page number, it will be interpreted to
mean that there are more than one page with the page number, and to
use this one; for instance, 4 2 means to find the second occurance

of page 4.

F--open and display a new file (or the first file, if no file name was
given on the command line.) You will be prompted for the file name_.

R--reopen the same file and go to the current position in it. Used if the
current dvi file was updated for some reason.

I--increase magnification one half magstep.

D---decrease magnification one half magstep.

C--clear the screen.

B--toggle the border on/off (default: off).

!--used to exit to a shell. Can be used to re-run TaX, for instance.

Q, X---exit. You must hit one of these two keys twice to exit.

?, H---help. Print this help message.

l_o _ Append_ A. dviiris

dviiris specials

The special commands recognized by dviiris consist of:

landscape---indicates that this document is a landscape document, and the
box should be printed accordingly.

foreground (color>--indicates the color to use for text and rules. (color)
is replaced by the name of a color in lower case, no parenthesis.

background (color)--indicates the color to use for the background.

map (color) (red) (green) (blue)--creates a new color map entry for a
color you specify. If the color already exists, this command will
be ignored. (red), (green), and (blue) are integers between 0 and
255 for the red, green and blue intensity levels.

Hit [RETURN]---

